Skip to main content

Applications of Antioxidants: A Review

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 158 Accesses

Abstract

Antioxidants are substances that fight free radicals produced in the body due to several intrinsic as well as extrinsic factors such as pollution, smoking, UV radiation, etc. They play a preventive as well as scavenging role in removing the excess free radicals thereby preventing oxidative stress. Oxidative stress is capable of disturbing the normal body physiology and may cause lethal diseases such as cancer, Alzheimer’s, diabetes, etc. The antioxidants have an important role to play with the rapid increase in the external forces causing uncontrolled generation of free radicals. The human body produces its own antioxidants, called endogenous antioxidants. However, some antioxidants are obtained from external sources; these exogenous antioxidants fulfill the dietary requirements of the body. In the present chapter, natural as well as synthetic antioxidants have been discussed with special emphasis on plant-derived antioxidants and their potential applications in the treatment and management of life-threatening diseases. Plants being an all-natural hub for antioxidants have been discussed for their safer use, variety, and dosage. In addition to this, the role of antioxidants in the food, packaging, and cosmetics industry has also been highlighted. This chapter sums up the potential applications as well as working of antioxidants while underscoring its future prospects for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

NADPH:

Nicotinamide adenine dinucleotide phosphate

AOX:

Antioxidant

UV:

Ultraviolet

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

RSS:

Reactive sulfur species

DNA:

Deoxyribonucleic Acid

PET:

Photosynthetic electron transport

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

SOD:

Superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

ALA:

Alpha-lipoic acid

CoQ10:

Coenzyme Q10

RBC:

Red blood cell

CNS:

Central nervous system

MAO:

Monoamine oxidase

AGEs:

Advanced glycation end products

TP:

Tea polyphenols

EFA:

Essential fatty acids

DHA:

Docosahexaenoic acid

AA:

Arachidonic acid

CF:

Cystic fibrosis

CAD:

Cardiovascular disease

HIV:

Human immunodeficiency virus

NO:

Nitric oxide

NAC:

N-acetylcysteine

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

GSH:

Glutathione

ACE-2:

Angiotensin-converting enzyme 2

AP-1:

Activator protein 1

NF-κβ:

Nuclear transcription factor kappa B

TNFα:

Tumor necrosis factor α

PCOS:

Polycystic ovary syndrome

EDTA:

Ethylenediamine tetraacetic acid

PLA:

Polylactic acid

LPDE:

Polyethylene

References

  1. Yadav A et al (2016) Antioxidants and its functions in human body – a review. Res Environ Life Sci 9:1328–1331

    Google Scholar 

  2. Lobo V et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gülçin I, Elmastaş M, Aboul-Enein HY (2007) Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother Res 21(4):354–361

    Article  PubMed  CAS  Google Scholar 

  4. Jakubczyk K et al (2020) Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 48(284):124–127

    PubMed  Google Scholar 

  5. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  6. Olson KR (2020) Reactive oxygen species or reactive sulfur species: why we should consider the latter. J Exp Biol 223(4):jeb196352

    Article  PubMed  Google Scholar 

  7. Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94(3):651–715

    Article  CAS  PubMed  Google Scholar 

  8. Gülçin I et al (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79(3):325–329

    Article  PubMed  Google Scholar 

  9. Drew B, Leeuwenburgh C (2002) Aging and the role of reactive nitrogen species. Ann N Y Acad Sci 959:66–81

    Article  CAS  PubMed  Google Scholar 

  10. Halliwell B (1997) Antioxidants and human disease: a general introduction. Nutr Rev 55(1 Pt 2):S44–S49. discussion S49–52

    CAS  PubMed  Google Scholar 

  11. Aziz MA, Diab AS, Mohammed AA (2019) Antioxidant categories and mode of action, antioxidants, Emad Shalaby, IntechOpen. IntechOpen

    Google Scholar 

  12. Gülçin I et al (2019) Sage (Salvia pilifera): determination of its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities. J Food Measure Character 13:2062–2074

    Article  Google Scholar 

  13. Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32(1):67–103

    Article  CAS  PubMed  Google Scholar 

  14. Pandey N, Rai SP (2014) Biochemical Activity and Therapeutic Role of Antioxidants in Plants and Humans. In: NK Dubey (ed). Plants as a source of antioxidants, 1st edition. Oxfordshire, UK

    Google Scholar 

  15. Ahmad P et al (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  16. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  17. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100

    Article  CAS  PubMed  Google Scholar 

  18. Laxa M et al (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants (Basel) 8(4):94

    Article  CAS  Google Scholar 

  19. Shahidi F, Zhong Y (2010) Novel antioxidants in food quality preservation and health promotion. Eur J Lipid Sci Technol 112(9):930–940

    Article  CAS  Google Scholar 

  20. Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24(22):4132

    Article  PubMed Central  CAS  Google Scholar 

  21. Khan MK, Paniwnyk L, Hassan S (2019) Polyphenols as natural antioxidants: sources, extraction and applications in food, cosmetics and drugs. In: Li Y, Chemat F (eds) Plant based “Green Chemistry 2.0”: moving from evolutionary to revolutionary. Springer Singapore, Singapore, pp 197–235

    Chapter  Google Scholar 

  22. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME (2018) Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63(1):68–78

    Article  PubMed  Google Scholar 

  23. Pal M, Misra K, Dhillon G, Brar S, Verma M (2014) Antioxidants. p. 117–138. https://doi.org/10.1007/978-1-4614-8005-1_6

  24. Lazzarino G et al (2019) Water- and fat-soluble antioxidants in human seminal plasma and serum of fertile males. Antioxidants (Basel) 8(4):96

    Article  CAS  Google Scholar 

  25. Tian F, Decker EA, Goddard JM (2013) Controlling lipid oxidation of food by active packaging technologies. Food Funct 4(5):669–680

    Article  CAS  PubMed  Google Scholar 

  26. Poljsak B, Dahmane R, Godic A (2013) Skin and antioxidants. J Cosmet Laser Ther 15(2):107–113

    Article  PubMed  Google Scholar 

  27. Engin AB et al (2011) Effect of butylated hydroxytoluene (E321) pretreatment versus L-arginine on liver injury after sub-lethal dose of endotoxin administration. Environ Toxicol Pharmacol 32(3):457–464

    Article  CAS  PubMed  Google Scholar 

  28. Botterweck AA et al (2000) Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands Cohort Study. Food Chem Toxicol 38(7):599–605

    Article  CAS  PubMed  Google Scholar 

  29. Randhawa S, Bahna SL (2009) Hypersensitivity reactions to food additives. Curr Opin Allergy Clin Immunol 9(3):278–283

    Article  CAS  PubMed  Google Scholar 

  30. Kornienko JS et al (2019) High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep 9(1):1296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bleve M et al (2008) An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep Purif Technol 64(2):192–197

    Article  CAS  Google Scholar 

  32. Shukla SD, Bhatnagar M, Khurana S (2012) Critical evaluation of ayurvedic plants for stimulating intrinsic antioxidant response. Front Neurosci 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  33. Caleja C et al (2016) Fortification of yogurts with different antioxidant preservatives: a comparative study between natural and synthetic additives. Food Chem 210:262–268

    Article  CAS  PubMed  Google Scholar 

  34. Shah MA, Bosco SJ, Mir SA (2014) Plant extracts as natural antioxidants in meat and meat products. Meat Sci 98(1):21–33

    Article  CAS  PubMed  Google Scholar 

  35. Lachman J, Pronek D, Hejtmànkowà A, Pivec V, Dudjak J, Faitovà K (2003) Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hort Sci (Prague) 30(4):142–147

    Article  Google Scholar 

  36. Yashin A et al (2017) Antioxidant activity of spices and their impact on human health: a review. Antioxidants (Basel) 6(3):70

    Google Scholar 

  37. Tanapichatsakul C, Khruengsai S, Pripdeevech P (2020) In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes. PLoS One 15(11):e0242862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nanta R, Kale RK (2011) Chemomodulatory effect of Dolichos biflorus Linn. On skin and forestomach papillomagenesis in Swiss albino mice. Indian J Exp Biol 49(7):483–490

    PubMed  Google Scholar 

  39. Jurikova T et al (2016) Black crowberry (Empetrum nigrum L.) flavonoids and their health promoting activity. Molecules 21(12):1685

    Article  PubMed Central  CAS  Google Scholar 

  40. Yuan Q, Zhao L (2017) The mulberry (Morus alba L.) fruit-a review of characteristic components and health benefits. J Agric Food Chem 65(48):10383–10394

    Article  CAS  PubMed  Google Scholar 

  41. Seo KH et al (2015) Neuroprotective effect of prenylated arylbenzofuran and flavonoids from morus alba fruits on glutamate-induced oxidative injury in HT22 hippocampal cells. J Med Food 18(4):403–408

    Article  CAS  PubMed  Google Scholar 

  42. Raman ST et al (2016) In vitro and in vivo antioxidant activity of flavonoid extracted from mulberry fruit (Morus alba L.). Pharmacogn Mag 12(46):128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarikaphuti A et al (2013) Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Exp Ther Med 6(3):689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim HH et al (2013) Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp Biol Med (Maywood) 238(10):1160–1169

    Article  CAS  Google Scholar 

  45. Ganesan K, Xu B (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18(11):2331

    Article  PubMed Central  CAS  Google Scholar 

  46. Khan A, Zaman G, Anderson RA (2009) Bay leaves improve glucose and lipid profile of people with type 2 diabetes. J Clin Biochem Nutr 44(1):52–56

    Article  PubMed  Google Scholar 

  47. Panza E et al (2011) Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation. J Nat Prod 74(2):228–233

    Article  CAS  PubMed  Google Scholar 

  48. Aung HH et al (2007) Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 29(3):175–180

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmed T et al (2010) Use of prunes as a control of hypertension. J Ayub Med Coll Abbottabad 22(1):28–31

    PubMed  Google Scholar 

  50. Tchombé NL, Louajri A, Benajiba MH (2012) Therapeutic effects of ginger (Zingiber officinale). Isesco J Sci Technol 8:64–69

    Google Scholar 

  51. Vasanthi HR, Parameswari RP (2010) Indian spices for healthy heart - an overview. Curr Cardiol Rev 6(4):274–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rastogi S, Pandey MM, Rawat AKS (2017) Spices: therapeutic potential in cardiovascular health. Curr Pharm Des 23(7):989–998

    Article  CAS  PubMed  Google Scholar 

  53. Alappat L, Awad AB (2010) Curcumin and obesity: evidence and mechanisms. Nutr Rev 68(12):729–738

    Article  PubMed  Google Scholar 

  54. Villegas I, Sánchez-Fidalgo S, de la Lastra CA (2008) New mechanisms and therapeutic potential of curcumin for colorectal cancer. Mol Nutr Food Res 52(9):1040–1061

    Article  CAS  PubMed  Google Scholar 

  55. Kim SH, Bommareddy A, Singh SV (2011) Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 4(6):897–906

    Article  CAS  Google Scholar 

  56. Srinivasan K (2013) Dietary spices as beneficial modulators of lipid profile in conditions of metabolic disorders and diseases. Food Funct 4(4):503–521

    Article  CAS  PubMed  Google Scholar 

  57. Bordia A, Verma SK, Srivastava KC (1997) Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot Essent Fat Acids 56(5):379–384

    Article  CAS  Google Scholar 

  58. Kaviarasan S, Vijayalakshmi K, Anuradha CV (2004) Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods Hum Nutr 59(4):143–147

    Article  CAS  PubMed  Google Scholar 

  59. Davis PA, Yokoyama W (2011) Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 14(9):884–889

    Article  CAS  PubMed  Google Scholar 

  60. Dugoua JJ et al (2007) From type 2 diabetes to antioxidant activity: a systematic review of the safety and efficacy of common and cassia cinnamon bark. Can J Physiol Pharmacol 85(9):837–847

    Article  CAS  PubMed  Google Scholar 

  61. Hwang IK et al (2009) Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. J Med Food 12(5):990–995

    Article  CAS  PubMed  Google Scholar 

  62. Atsumi T, Tonosaki K (2007) Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res 150(1):89–96

    Article  CAS  PubMed  Google Scholar 

  63. Karmakar S et al (2012) Clove (Syzygium aromaticum Linn) extract rich in eugenol and eugenol derivatives shows bone-preserving efficacy. Nat Prod Res 26(6):500–509

    Article  CAS  PubMed  Google Scholar 

  64. Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28(6):331–346

    CAS  PubMed  Google Scholar 

  65. Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions. J Organomet Chem 69(7):2309–2314

    Article  CAS  Google Scholar 

  66. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Organomet Chem 69(18):5888–5896

    Article  CAS  Google Scholar 

  67. Pillai CK, Pillai KS (2002) Antioxidants in health. Indian J Physiol Pharmacol 46(1):1–5

    CAS  PubMed  Google Scholar 

  68. Fusco D et al (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2(3):377–387

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nunomura A et al (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65(7):631–641

    Article  CAS  PubMed  Google Scholar 

  70. Castellani R et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70(3):357–360

    Article  CAS  PubMed  Google Scholar 

  71. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 35(22):7497–7504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Praticò D et al (2000) Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 48(5):809–812

    Article  PubMed  Google Scholar 

  74. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147

    Article  CAS  PubMed  Google Scholar 

  75. Staehelin HB (2005) Micronutrients and Alzheimer’s disease. Proc Nutr Soc 64(4):565–570

    Article  CAS  PubMed  Google Scholar 

  76. Grundman M (2000) Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr 71(2):630s–636s

    Article  CAS  PubMed  Google Scholar 

  77. Mancuso C et al (2008) Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 16:1921–1931

    Article  Google Scholar 

  78. Feng Y, Wang X (2012) Antioxidant therapies for Alzheimer’s disease. Oxidative Med Cell Longev 2012:472932

    Article  Google Scholar 

  79. de Farias CC et al (2016) Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: disease and staging biomarkers and new drug targets. Neurosci Lett 617:66–71

    Article  PubMed  CAS  Google Scholar 

  80. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(6 Suppl 3):S161–S170

    Article  CAS  PubMed  Google Scholar 

  81. You LH et al (2015) Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease. Neuroscience 284:234–246

    Article  CAS  PubMed  Google Scholar 

  82. Foy CJ et al (1999) Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM 92(1):39–45

    Article  CAS  PubMed  Google Scholar 

  83. Federico A, Battisti C, Formichi P, Dotti MT (1995) Plasma levels of vitamin E in Parkinson’s disease. J Neural Transm Suppl 45:267–70

    Google Scholar 

  84. Joseph JA et al (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19(18):8114–8121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Campolo J et al (2016) Antioxidant and inflammatory biomarkers for the identification of prodromal Parkinson’s disease. J Neurol Sci 370:167–172

    Article  CAS  PubMed  Google Scholar 

  86. Percário S et al (2020) Oxidative stress in Parkinson’s disease: potential benefits of antioxidant supplementation. Oxidative Med Cell Longev 2020:2360872

    Article  Google Scholar 

  87. Wang X-S et al (2017) Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: a systematic experiment literatures review. BMC Complement Altern Med 17(1):412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ruhe RC, McDonald RB (2001) Use of antioxidant nutrients in the prevention and treatment of type 2 diabetes. J Am Coll Nutr 20(5 Suppl):363S–369S. discussion 381S–383S

    Article  CAS  PubMed  Google Scholar 

  89. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212(2):167–178

    Article  CAS  PubMed  Google Scholar 

  90. Feskens EJ et al (1995) Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 18(8):1104–1112

    Article  CAS  PubMed  Google Scholar 

  91. Al-Waili N et al (2017) Natural antioxidants in the treatment and prevention of diabetic nephropathy; a potential approach that warrants clinical trials. Redox Rep 22(3):99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Laight DW, Carrier MJ, Anggård EE (2000) Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res 47(3):457–464

    Article  CAS  PubMed  Google Scholar 

  93. Bajaj S, Khan A (2012) Antioxidants and diabetes. Indian J Endocr Metab 16(8):267–271

    Article  CAS  Google Scholar 

  94. Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bouayed J, Bohn T (2010) Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev 3(4):228–237

    Article  Google Scholar 

  97. Sayin VI et al (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6(221):221ra15

    Article  PubMed  CAS  Google Scholar 

  98. Le Gal K et al (2015) Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 7(308):308re8

    PubMed  Google Scholar 

  99. Piskounova E et al (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527(7577):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prasad S, Srivastava SK (2020) Oxidative stress and cancer: chemopreventive and therapeutic role of Triphala. Antioxidants (Basel) 9(1):72

    Google Scholar 

  101. Glebova K et al (2015) Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett 356(1):22–33

    Article  CAS  PubMed  Google Scholar 

  102. Vikram B, Coleman CN, Deye JA (2009) Current status and future potential of advanced technologies in radiation oncology. Part 1. Challenges and resources. Oncology (Williston Park) 23(3):279–283

    Google Scholar 

  103. Karatas F et al (2003) Antioxidant status & lipid peroxidation in patients with rheumatoid arthritis. Indian J Med Res 118:178–181

    CAS  PubMed  Google Scholar 

  104. Pattison DJ et al (2004) Vitamin C and the risk of developing inflammatory polyarthritis: prospective nested case-control study. Ann Rheum Dis 63(7):843–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rennie KL et al (2003) Nutritional management of rheumatoid arthritis: a review of the evidence. J Hum Nutr Diet 16(2):97–109

    Article  CAS  PubMed  Google Scholar 

  106. El-Barbary AM, Hussein MS, Rageh EM, Hamouda HE, Wagih AA, Ismail RG (2011) Effect of atorvastatin on inflammation and modification of vascular risk factors in rheumatoid arthritis. J Rheumatol 38(2):229–235

    Google Scholar 

  107. Jalili M et al (2014) Beneficial role of antioxidants on clinical outcomes and erythrocyte antioxidant parameters in rheumatoid arthritis patients. Int J Prev Med 5(7):835–840

    PubMed  PubMed Central  Google Scholar 

  108. Peretz A, Siderova V, Nève J (2001) Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial. Scand J Rheumatol 30(4):208–212

    Article  CAS  PubMed  Google Scholar 

  109. Bae SC, Kim SJ, Sung MK (2003) Inadequate antioxidant nutrient intake and altered plasma antioxidant status of rheumatoid arthritis patients. J Am Coll Nutr 22(4):311–315

    Article  CAS  PubMed  Google Scholar 

  110. Hejazi J et al (2011) Nutritional status of Iranian women with rheumatoid arthritis: an assessment of dietary intake and disease activity. Womens Health (Lond) 7(5):599–605

    Article  CAS  Google Scholar 

  111. Marino A et al (2015) Role of natural antioxidants and potential use of bergamot in treating rheumatoid arthritis. PharmaNutrition 3(2):53–59

    Article  CAS  Google Scholar 

  112. Sun Q, Cheng L, Zhang X, Wu Z, Weng P (2021) The interaction between tea polyphenols and host intestinal microorganisms: an effective way to prevent psychiatric disorders. Food Funct 12:952–962

    Article  CAS  PubMed  Google Scholar 

  113. Kasprzak-Drozd K et al (2021) Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int J Mol Sci 22(7):3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Njoroge SW et al (2012) DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity. J Lipid Res 53(2):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kogan I et al (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22(9):1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Galli F et al (2011) Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 1822:690–713

    Article  PubMed  CAS  Google Scholar 

  117. Murray CJ, Lopez AD (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349(9061):1269–1276

    Article  CAS  PubMed  Google Scholar 

  118. Asplund K (2002) Antioxidant vitamins in the prevention of cardiovascular disease: a systematic review. J Intern Med 251(5):372–392

    Article  CAS  PubMed  Google Scholar 

  119. Gaziano JM (1996) Antioxidants in cardiovascular disease: randomized trials. Nutrition 12(9):583–588

    Article  CAS  PubMed  Google Scholar 

  120. Rahman K (2001) Historical perspective on garlic and cardiovascular disease. J Nutr 131(3s):977s–979s

    Article  CAS  PubMed  Google Scholar 

  121. Nuttall SL, Kendall MJ, Martin U (1999) Antioxidant therapy for the prevention of cardiovascular disease. QJM 92(5):239–244

    Article  CAS  PubMed  Google Scholar 

  122. University of Alabama at Birmingham (2011) Antioxidant may prevent alcohol-induced liver disease, study suggests. ScienceDaily

    Google Scholar 

  123. Peterhans E et al (1987) Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun 3(1–5):39–46

    Article  CAS  PubMed  Google Scholar 

  124. Liu M et al (2017) The role of oxidative stress in influenza virus infection. Microbes Infect 19(12):580–586

    Article  PubMed  CAS  Google Scholar 

  125. Peterhans E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr 127(5):962S–965S

    Article  CAS  PubMed  Google Scholar 

  126. Hooper DC et al (1995) Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc Natl Acad Sci U S A 92(12):5312–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. De Flora S et al (2001) Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22(7):999–1013

    Article  PubMed  Google Scholar 

  128. Cai J et al (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34(7):928–936

    Article  CAS  PubMed  Google Scholar 

  129. Mukhtar M et al (2008) Antiviral potentials of medicinal plants. Virus Res 131(2):111–120

    Article  CAS  PubMed  Google Scholar 

  130. Krylova NV, Popov AM, Leonova GN (2016) Antioxidants as potential antiviral agents for flavivirus infections. Antibiot Khimioter 61(5–6):25–31

    CAS  PubMed  Google Scholar 

  131. Brugh M Jr (1977) Butylated hydroxytoluene protects chickens exposed to Newcastle disease virus. Science 197(4310):1291–1292

    Article  CAS  PubMed  Google Scholar 

  132. Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21(5):641–649

    Article  CAS  PubMed  Google Scholar 

  133. Jayaweera M et al (2020) Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res 188:109819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87(4):281–286

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chen N et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV (2020) Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 11:570122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Agrawal PK, Agrawal C, Blunden G (2020) Quercetin: antiviral significance and possible COVID-19 integrative considerations. Nat Prod Commun 15(12):1934578X20976293

    CAS  Google Scholar 

  138. Lawenda BD et al (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100(11):773–783

    Article  CAS  PubMed  Google Scholar 

  139. Zai-Qun Liu (2014) Antioxidants may not always be beneficial to health. Nutr 30(2):131–133

    Google Scholar 

  140. Helfrich YR, Sachs DL, Voorhees JJ (2008) Overview of skin aging and photoaging. Dermatol Nurs 20(3):177–183. quiz 184

    PubMed  Google Scholar 

  141. Tominaga K et al (2012) Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim Pol 59(1):43–47

    Article  CAS  PubMed  Google Scholar 

  142. Jadoon S et al (2015) Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxidative Med Cell Longev 2015:709628

    Article  CAS  Google Scholar 

  143. Kumar S, Swarankar V, Sharma S et al (2012) Herbal cosmetics: used for skin and hair. Invent Rapid Cosmeceut 2012:1–7

    Google Scholar 

  144. Agarwal R et al (1993) Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem Photobiol 58(5):695–700

    Article  CAS  PubMed  Google Scholar 

  145. Siripatrawan U, Harte B (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775

    Article  CAS  Google Scholar 

  146. Calabrese V et al (1999) Biochemical studies on a novel antioxidant from lemon oil and its biotechnological application in cosmetic dermatology. Drugs Exp Clin Res 25(5):219–225

    CAS  PubMed  Google Scholar 

  147. Calabrese V et al (1999) Oxidative stress and antioxidants at skin biosurface: a novel antioxidant from lemon oil capable of inhibiting oxidative damage to the skin. Drugs Exp Clin Res 25(6):281–287

    CAS  PubMed  Google Scholar 

  148. Ahmed S et al (2018) Honey as a potential natural antioxidant medicine: an insight into its molecular mechanisms of action. Oxidative Med Cell Longev 2018:8367846

    Google Scholar 

  149. Hu Y, Xu J, Hu Q (2003) Evaluation of antioxidant potential of aloe vera (Aloe barbadensis miller) extracts. J Agric Food Chem 51(26):7788–7791

    Article  CAS  PubMed  Google Scholar 

  150. Mascarenhas MN et al (2012) National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med 9(12):e1001356

    Article  PubMed  PubMed Central  Google Scholar 

  151. Boivin J et al (2007) International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22(6):1506–1512

    Article  PubMed  Google Scholar 

  152. Smits RM et al (2018) Antioxidants in fertility: impact on male and female reproductive outcomes. Fertil Steril 110(4):578–580

    Article  CAS  PubMed  Google Scholar 

  153. Aitken RJ, Clarkson JS (1987) Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 81(2):459–469

    Article  CAS  PubMed  Google Scholar 

  154. Zini A, de Lamirande E, Gagnon C (1993) Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl 16(3):183–188

    Article  CAS  PubMed  Google Scholar 

  155. Bykova M, Athayde K, Sharma R, Jha R, Sabanegh E, Agarwal A (2017) Defining the reference value of seminal reactive oxygen species in a population of infertile men and normal healthy volunteers. Fertil Steril 88:305

    Google Scholar 

  156. Adewoyin M et al (2017) Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases 5(1):9

    Article  PubMed Central  CAS  Google Scholar 

  157. Agarwal A et al (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  158. Showell MG et al (2017) Antioxidants for female subfertility. Cochrane Database Syst Rev 7(7):Cd007807

    PubMed  Google Scholar 

  159. Adeoye O et al (2018) Review on the role of glutathione on oxidative stress and infertility. JBRA Assist Reprod 22(1):61–66

    PubMed  PubMed Central  Google Scholar 

  160. Lim J, Ali S, Liao LS, Nguyen ES, Ortiz L, Reshel S, Luderer U (2020) Antioxidant supplementation partially rescues accelerated ovarian follicle loss, but not oocyte quality, of glutathione-deficient mice†. Biol Reprod 24;102(5):1065–1079

    Google Scholar 

  161. Gardiner CS et al (1998) Glutathione is present in reproductive tract secretions and improves development of mouse embryos after chemically induced glutathione depletion. Biol Reprod 59(2):431–436

    Article  CAS  PubMed  Google Scholar 

  162. Otalvaro A, Angela P, Ludy Rendón Fernández, Margarita Gonzalez, Maria (2018) Plant Extracts as Antioxidant Additives for Food Industry. https://doi.org/10.5772/intechopen.75444

  163. Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG (2011) Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem 13;59(13):6837–46

    Google Scholar 

  164. Basu P, Maier C (2016) In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharm Res 8(4):258–264

    CAS  Google Scholar 

  165. Soto-Cantu CD, Garcia AZG, Peralta E, Islas-Rubio AR, Cordova AG (2008) J Dairy Sci

    Google Scholar 

  166. Sánchez-Escalante A et al (2001) The effects of ascorbic acid, taurine, carnosine and rosemary powder on colour and lipid stability of beef patties packaged in modified atmosphere. Meat Sci 58(4):421–429

    Article  PubMed  Google Scholar 

  167. Conte A, Brescia I, Del Nobile MA (2011) Lysozyme/EDTA disodium salt and modified-atmosphere packaging to prolong the shelf life of burrata cheese. J Dairy Sci 94(11):5289–5297

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mehla, N., Kothari Chhajer, A., Kumar, K., Dahiya, S., Mohindroo, V. (2021). Applications of Antioxidants: A Review. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics