Skip to main content

Methodological Aspects of Lymphoscintigraphy: Bicompartmental Versus Monocompartmental Radiocolloid Administration

  • Chapter
  • First Online:
Atlas of Lymphoscintigraphy and Sentinel Node Mapping

Abstract

This chapter reviews the methodological aspects of peripheral lymphoscintigraphy. Advantages and disadvantages of intradermal versus subcutaneous radiopharmaceutical administration and subfascial injections are discussed. The protocol currently used at our site for bicompartmental peripheral lymphoscintigraphy, enabling investigation of the deep lymphatic circulation first followed by evaluation of the superficial lymphatic circulation, is described. Imaging protocols for peripheral lymphoscintigraphy as well as for intracavitary lymph effusions with the most widely employed stress tests to enhance lymphatic flow are also reviewed. Interpretation and reporting by visual qualitative analysis and by semiquantitative evaluation are carefully reported and discussed. The basic concepts of imaging lymphatic circulation with PET/CT, PET/MR, CT, and indocyanine green are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissleder H, Weissleder R. Lymphedema: evaluation of qualitative and quantitative lymphoscintigraphy in 238 patients. Radiology. 1988;167:729–35.

    CAS  PubMed  Google Scholar 

  2. Cornford ME, Oldendorf WH. Terminal endothelial cells of lymph capillaries as active transport structures involved in the formation of lymph in rat skin. Lymphology. 1993;26:67–78.

    CAS  PubMed  Google Scholar 

  3. Szuba A, Rockson SG. Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997;2:321–6.

    CAS  PubMed  Google Scholar 

  4. Ikomi F, Schmid-Schönbein GW. Lymph transport in the skin. Clin Dermatol. 1995;13:419–27.

    CAS  PubMed  Google Scholar 

  5. Lubach D, LĂ¼demann W, Berens von Rautenfeld D. Recent findings on the angioarchitecture of the lymph vessel system of human skin. Br J Dermatol. 1996;135:733–7.

    CAS  PubMed  Google Scholar 

  6. Adair TH, Vance GA, Montani JP, et al. Effect of skin concavity on subcutaneous tissue fluid pressure. Am J Phys. 1991;261:H349–53.

    CAS  Google Scholar 

  7. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.

    CAS  PubMed  Google Scholar 

  8. Spiegel M, Vesti B, Shore A, et al. Pressure measurement in lymph capillaries of the human skin. Vasa Suppl. 1991;33:278.

    Google Scholar 

  9. Reddy NP, Patel K. A mathematical model of flow through the terminal lymphatics. Med Eng Phys. 1995;17:134–40.

    CAS  PubMed  Google Scholar 

  10. Ikomi F, Hunt J, Hanna G, et al. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J Appl Physiol (1985). 1996;81:2060–7.

    Google Scholar 

  11. Olszewski WL, Jamal S, Manokaran G, et al. Bacteriologic studies of skin, tissue fluid, lymph, and lymph nodes in patients with filarial lymphedema. Am J Trop Med Hyg. 1997;57:7–15.

    CAS  PubMed  Google Scholar 

  12. Pecking AP. Possibilities and restriction of isotopic lymphography for the assessment of therapeutic effects in lymphedema. Wien Med Wochenschr. 1999;149:105–6.

    CAS  PubMed  Google Scholar 

  13. Cambria RA, Gloviczki P, Naessens JM, et al. Noninvasive evaluation of the lymphatic system with lymphoscintigraphy: a prospective, semiquantitative analysis in 386 extremities. J Vasc Surg. 1993;18:773–82.

    Google Scholar 

  14. Mortimer PS. Evaluation of lymphatic function: abnormal lymph drainage in venous disease. Int Angiol. 1995;14:32–5.

    CAS  PubMed  Google Scholar 

  15. Ohtake E, Matsui K. Lymphoscintigraphy in patients with lymphedema. A new approach using intradermal injections of technetium-99m human serum albumin. Clin Nucl Med. 1986;11:474–8.

    CAS  PubMed  Google Scholar 

  16. McNeill GC, Witte MH, Witte CL, et al. Whole-body lymphangioscintigraphy: preferred method for initial assessment of the peripheral lymphatic system. Radiology. 1989;172:495–502.

    CAS  PubMed  Google Scholar 

  17. Nawaz MK, Hamad MM, Abdel-Dayem HM, et al. 99mTc human serum albumin lymphoscintigraphy in lymphedema of the lower extremities. Clin Nucl Med. 1990;15:794–9.

    CAS  PubMed  Google Scholar 

  18. Nawaz MK, Hamad MM, Abdel-Dayem HM, et al. Lymphoscintigraphy in lymphedema of the lower limbs using 99mTc HSA. Angiology. 1992;43:147–54.

    CAS  PubMed  Google Scholar 

  19. Suga K, Uchisako H, Nakanishi T, et al. Lymphoscintigraphic assessment of leg oedema following arterial reconstruction using a load produced by standing. Nucl Med Commun. 1991;12:907–17.

    CAS  PubMed  Google Scholar 

  20. Williams WH, Witte CL, Witte MH, et al. Radionuclide lymphangioscintigraphy in the evaluation of peripheral lymphedema. Clin Nucl Med. 2000;25:451–64.

    Google Scholar 

  21. Miranda F, Perez MC, Castiglioni ML, et al. Effect of sequential intermittent pneumatic compression on both leg lymphedema volume and on lymph transport as semi-quantitatively evaluated by lymphoscintigraphy. Lymphology. 2001;34:135–41.

    PubMed  Google Scholar 

  22. Mostbeck A, Partsch H. Isotope lymphography—possibilities and limits in evaluation of lymph transport. Wien Med Wochenschr. 1999;149:87–91.

    Google Scholar 

  23. Partsch H. Assessment of abnormal lymph drainage for the diagnosis of lymphedema by isotopic lymphangiography and by indirect lymphography. Clin Dermatol. 1995;13:445–50.

    Google Scholar 

  24. Bräutigam P, Földi E, Schaiper I, et al. Analysis of lymphatic drainage in various forms of leg edema using two compartment lymphoscintigraphy. Lymphology. 1998;31:43–55.

    Google Scholar 

  25. Bräutigam P, Vanscheidt W, Földi E, et al. The importance of the subfascial lymphatics in the diagnosis of lower limb edema: investigations with semiquantitative lymphoscintigraphy. Angiology. 1993;44:464–70.

    Google Scholar 

  26. Iimura T, Fukushima Y, Kumita S, et al. Estimating lymphodynamic conditions and lymphovenous anastomosis efficacy using 99mTc-phytate lymphoscintigraphy with SPECT-CT in patients with lower-limb lymphedema. Plast Reconstr Surg Glob Open. 2015;3:e404.

    Google Scholar 

  27. Baulieu F, Bourgeois P, Maruani A, et al. Contributions of SPECT/CT imaging to the lymphoscintigraphic investigations of the lower limb lymphedema. Lymphology. 2013;46:106–19.

    Google Scholar 

  28. Das J, Thambudorai R, Ray S. Lymphoscintigraphy combined with single-photon emission computed tomography-computed tomography (SPECT-CT): a very effective imaging approach for identification of the site of leak in postoperative chylothorax. Indian J Nucl Med. 2015;30:177–9.

    Google Scholar 

  29. Weiss M, Schwarz F, Wallmichrath J, et al. Chylothorax and chylous ascites. Clinical utility of planar scintigraphy and tomographic imaging with SPECT/CT. Nuklearmedizin. 2015;54:231–40.

    Google Scholar 

  30. Partsch H. Practical aspects of indirect lymphography and lymphoscintigraphy. Lymphat Res Biol. 2003;1:71–3; discussion 3–4.

    Google Scholar 

  31. Jensen MR, Simonsen L, Karlsmark T, et al. Lymphoedema of the lower extremities—background, pathophysiology and diagnostic considerations. Clin Physiol Funct Imaging. 2010;30:389–98.

    Google Scholar 

  32. Ogawa Y, Hayashi K. 99mTc-DTPA-HSA lymphoscintigraphy in lymphedema of the lower extremities: diagnostic significance of dynamic study and muscular exercise. Kaku Igaku. 1999;36:31–6.

    Google Scholar 

  33. Kataoka M, Kawamura M, Hamada K, et al. Quantitative lymphoscintigraphy using 99Tcm human serum albumin in patients with previously treated uterine cancer. Br J Radiol. 1991;64:1119–21.

    Google Scholar 

  34. Rijke AM, Croft BY, Johnson RA, et al. Lymphoscintigraphy and lymphedema of the lower extremities. J Nucl Med. 1990;31:990–8.

    Google Scholar 

  35. Kleinhans E, Baumeister RG, Hahn D, et al. Evaluation of transport kinetics in lymphoscintigraphy: follow-up study in patients with transplanted lymphatic vessels. Eur J Nucl Med. 1985;10:349–52.

    Google Scholar 

  36. Ikomi F, Hanna GK, Schmid-Schönbein GW. Mechanism of colloidal particle uptake into the lymphatic system: basic study with percutaneous lymphography. Radiology. 1995;196:107–13.

    Google Scholar 

  37. de Godoy JM, Santana KR, Godoy MF. Lymphoscintigraphic evaluation of manual lymphatic therapy: the Godoy & Godoy technique. Phlebology. 2015;30:39–44.

    Google Scholar 

  38. Dabrowski J, Merkert R, Kuśmierek J. Optimized lymphoscintigraphy and diagnostics of lymphatic oedema of the lower extremities. Nucl Med Rev Cent East Eur. 2008;11:26–9.

    Google Scholar 

  39. Damstra RJ, van Steensel MA, Boomsma JH, et al. Erysipelas as a sign of subclinical primary lymphoedema: a prospective quantitative scintigraphic study of 40 patients with unilateral erysipelas of the leg. Br J Dermatol. 2008;158:1210–5.

    Google Scholar 

  40. Gloviczki P, Calcagno D, Schirger A, et al. Noninvasive evaluation of the swollen extremity: experiences with 190 lymphoscintigraphic examinations. J Vasc Surg. 1989;9:683–9; discussion 90.

    Google Scholar 

  41. Stanton AW, Svensson WE, Mellor RH, et al. Differences in lymph drainage between swollen and non-swollen regions in arms with breast-cancer-related lymphoedema. Clin Sci (Lond). 2001;101:131–40.

    Google Scholar 

  42. Modi S, Stanton AW, Svensson WE, et al. Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J Physiol. 2007;583:271–85.

    Google Scholar 

  43. Pain SJ, Nicholas RS, Barber RW, et al. Quantification of lymphatic function for investigation of lymphedema: depot clearance and rate of appearance of soluble macromolecules in blood. J Nucl Med. 2002;43:318–24.

    Google Scholar 

  44. Stamp GF, Peters AM. Peripheral lymphovenous communication in lymphoedema. Nucl Med Commun. 2012;33:701–7.

    Google Scholar 

  45. Pecking AP. Evaluation by lymphoscintigraphy of the effect of a micronized flavonoid fraction (Daflon 500 mg) in the treatment of upper limb lymphedema. Int Angiol. 1995;14:39–43.

    Google Scholar 

  46. Pecking AP, Février B, Wargon C, et al. Efficacy of Daflon 500 mg in the treatment of lymphedema (secondary to conventional therapy of breast cancer). Angiology. 1997;48:93–8.

    Google Scholar 

  47. Svensson W, Glass DM, Bradley D, et al. Measurement of lymphatic function with technetium-99m-labelled polyclonal immunoglobulin. Eur J Nucl Med. 1999;26:504–10.

    Google Scholar 

  48. Havas E, Parviainen T, Vuorela J, et al. Lymph flow dynamics in exercising human skeletal muscle as detected by scintigraphy. J Physiol. 1997;504:233–9.

    Google Scholar 

  49. Lane K, Worsley D, McKenzie D. Lymphoscintigraphy to evaluate the effects of upper body dynamic exercise and handgrip exercise on radiopharmaceutical clearance from hands of healthy females. Lymphat Res Biol. 2005;3:16–24.

    Google Scholar 

  50. Lane K, Dolan L, Worsley D, et al. Lymphoscintigraphy to evaluate the effect of high versus low intensity upper body dynamic exercise on lymphatic function in healthy females. Lymphat Res Biol. 2006;4:159–65.

    Google Scholar 

  51. Bourgeois P, Munck D, Becker C. A three phase lymphoscintigraphic investigation protocol for the evaluation of lower limb edemas. Eur J Lymphology Relat Probl. 1997:10–21.

    Google Scholar 

  52. Ketterings C, Zeddeman S. Use of the C-scan in evaluation of peripheral lymphedema. Lymphology. 1997;30:49–62.

    Google Scholar 

  53. Proby CM, Gane JN, Joseph AE, et al. Investigation of the swollen limb with isotope lymphography. Br J Dermatol. 1990;123:29–37.

    Google Scholar 

  54. Suga K, Kume N, Matsunaga N, et al. Assessment of leg oedema by dynamic lymphoscintigraphy with intradermal injection of technetium-99m human serum albumin and load produced by standing. Eur J Nucl Med. 2001;28:294–303.

    Google Scholar 

  55. O’Mahony S, Rose SL, Chilvers AJ, et al. Finding an optimal method for imaging lymphatic vessels of the upper limb. Eur J Nucl Med Mol Imaging. 2004;31:555–63.

    Google Scholar 

  56. O’Mahony S, Solanki CK, Barber RW, et al. Imaging of lymphatic vessels in breast cancer-related lymphedema: intradermal versus subcutaneous injection of 99mTc-immunoglobulin. AJR Am J Roentgenol. 2006;186:1349–55.

    Google Scholar 

  57. Bourgeois P. Scintigraphic investigations of the lymphatic system: the influence of injected volume and quantity of labeled colloidal tracer. J Nucl Med. 2007;48:693–5.

    Google Scholar 

  58. Bourgeois P, Leduc O, Belgrado JP, et al. Scintigraphic investigations of the superficial lymphatic system: quantitative differences between intradermal and subcutaneous injections. Nucl Med Commun. 2009;30:270–4.

    Google Scholar 

  59. Tartaglione G, Pagan M, Morese R, et al. Intradermal lymphoscintigraphy at rest and after exercise: a new technique for the functional assessment of the lymphatic system in patients with lymphoedema. Nucl Med Commun. 2010;31:547–51.

    Google Scholar 

  60. Jensen MR, Simonsen L, Karlsmark T, et al. The washout rate of a subcutaneous 99mTc-HSA depot in lower extremity lymphoedema. Clin Physiol Funct Imaging. 2012;32:126–32.

    Google Scholar 

  61. Hung JC, Wiseman GA, Wahner HW, et al. Filtered technetium-99m-sulfur colloid evaluated for lymphoscintigraphy. J Nucl Med. 1995;36:1895–901.

    Google Scholar 

  62. Tartaglione G, Rubello D. The evolving methodology to perform limb lymphoscintigraphy: from rest to exercise acquisition protocol. Microvasc Res. 2010;80:540–4.

    Google Scholar 

  63. Hvidsten S, Toyserkani NM, Sørensen JA, et al. A scintigraphic method for quantitation of lymphatic function in arm lymphedema. Lymphat Res Biol. 2018;16:353–9.

    Google Scholar 

  64. Keramida G, Winterman N, Wroe E, et al. Importance of accurate ilio-inguinal quantification in lower extremity lymphoscintigraphy. Nucl Med Commun. 2017;38:209–14.

    Google Scholar 

  65. Kramer EL. Lymphoscintigraphy: defining a clinical role. Lymphat Res Biol. 2004;2:32–7.

    Google Scholar 

  66. Burnand KG, McGuinness CL, Lagattolla NR, et al. Value of isotope lymphography in the diagnosis of lymphoedema of the leg. Br J Surg. 2002;89:74–8.

    Google Scholar 

  67. Brorson H, Svensson H, Norrgren K, et al. Liposuction reduces arm lymphedema without significantly altering the already impaired lymph transport. Lymphology. 1998;31:156–72.

    Google Scholar 

  68. Carena M, Campini R, Zelaschi G, et al. Quantitative lymphoscintigraphy. Eur J Nucl Med. 1988;14:88–92.

    Google Scholar 

  69. Bourgeois P, Dargent JL, Larsimont D, et al. Lymphoscintigraphy in angiomyomatous hamartomas and primary lower limb lymphedema. Clin Nucl Med. 2009;34:405–9.

    Google Scholar 

  70. Noer I, Lassen NA. Evidence of active transport (filtration?) of plasma proteins across the capillary walls in muscle and subcutis. Acta Physiol Scand Suppl. 1979;463:105–10.

    CAS  PubMed  Google Scholar 

  71. Keramida G, Wroe E, Winterman N, et al. Lymphatic drainage efficiency: a new parameter of lymphatic function. Acta Radiol. 2018;59:1097–101.

    PubMed  Google Scholar 

  72. Stanton AW, Modi S, Bennett Britton TM, et al. Lymphatic drainage in the muscle and subcutis of the arm after breast cancer treatment. Breast Cancer Res Treat. 2009;117:549–57.

    PubMed  Google Scholar 

  73. Stanton AW, Modi S, Mellor RH, et al. A quantitative lymphoscintigraphic evaluation of lymphatic function in the swollen hands of women with lymphoedema following breast cancer treatment. Clin Sci (Lond). 2006;110:553–61.

    Google Scholar 

  74. Pain SJ, Barber RW, Ballinger JR, et al. Side-to-side symmetry of radioprotein transfer from tissue space to systemic vasculature following subcutaneous injection in normal subjects and patients with breast cancer. Eur J Nucl Med Mol Imaging. 2003;30:657–61.

    PubMed  Google Scholar 

  75. Pain SJ, Barber RW, Ballinger JR, et al. Local vascular access of radioprotein injected subcutaneously in healthy subjects and patients with breast cancer-related lymphedema. J Nucl Med. 2004;45:789–96.

    CAS  PubMed  Google Scholar 

  76. Pain SJ, Barber RW, Ballinger JR, et al. Tissue-to-blood transport of radiolabelled immunoglobulin injected into the web spaces of the hands of normal subjects and patients with breast cancer-related lymphoedema. J Vasc Res. 2004;41:183–92.

    CAS  PubMed  Google Scholar 

  77. Gothard L, Stanton A, MacLaren J, et al. Non-randomised phase II trial of hyperbaric oxygen therapy in patients with chronic arm lymphoedema and tissue fibrosis after radiotherapy for early breast cancer. Radiother Oncol. 2004;70:217–24.

    CAS  PubMed  Google Scholar 

  78. Giacalone G, Yamamoto T, Belva F, et al. The application of virtual reality for preoperative planning of lymphovenous anastomosis in a patient with a complex lymphatic malformation. J Clin Med. 2019;8. pii: E371. https://doi.org/10.3390/jcm8030371.

  79. Heuveling DA, Karagozoglu KH, Van Lingen A, et al. Feasibility of intraoperative detection of sentinel lymph nodes with 89-zirconium-labelled nanocolloidal albumin PET-CT and a handheld high-energy gamma probe. EJNMMI Res. 2018;8:15. https://doi.org/10.1186/s13550-018-0368-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Long X, Zhang J, Zhang D, et al. Microsurgery guided by sequential preoperative lymphography using 68Ga-NEB PET and MRI in patients with lower-limb lymphedema. Eur J Nucl Med Mol Imaging. 2017;44:1501–10.

    PubMed  PubMed Central  Google Scholar 

  81. Zhang J, Lang L, Zhu Z, et al. Clinical translation of an albumin-binding PET radiotracer 68Ga-NEB. J Nucl Med. 2015;56:1609–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou G, Hou B, Jiang Y, et al. 68Ga-NOTA-Evans Blue TOF PET/MR lymphoscintigraphy evaluation of the severity of lower limb lymphedema. Clin Nucl Med. 2019;44:439–45.

    PubMed  PubMed Central  Google Scholar 

  83. Luciani A, Itti E, Rahmouni A, et al. Lymph node imaging: basic principles. Eur J Radiol. 2006;58:338–44.

    PubMed  Google Scholar 

  84. Cserni G. Metastases in axillary sentinel lymph nodes in breast cancer as detected by intensive histopathological work up. J Clin Pathol. 1999;52:922–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sugiyama S, Iwai T, Izumi T, et al. CT lymphography for sentinel lymph node mapping of clinically N0 early oral cancer. Cancer Imaging. 2019;19:72. https://doi.org/10.1186/s40644-019-0258-9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Suga K, Yuan Y, Okada M, et al. Breast sentinel lymph node mapping at CT lymphography with iopamidol: preliminary experience. Radiology. 2004;230:543–52.

    PubMed  Google Scholar 

  87. Minato M, Hirose C, Sasa M, et al. 3-dimensional computed tomography lymphography-guided identification of sentinel lymph nodes in breast cancer patients using subcutaneous injection of nonionic contrast medium: a clinical trial. J Comput Assist Tomogr. 2004;28:46–51.

    PubMed  Google Scholar 

  88. Suga K, Shimizu K, Kawakami Y, et al. Lymphatic drainage from esophagogastric tract: feasibility of endoscopic CT lymphography for direct visualization of pathways. Radiology. 2005;237:952–60.

    PubMed  Google Scholar 

  89. Yamamoto S, Suga K, Maeda K, et al. Breast sentinel lymph node navigation with three-dimensional computed tomography-lymphography: a 12-year study. Breast Cancer. 2016;23:456–62.

    PubMed  Google Scholar 

  90. Suga K, Yuan Y, Ueda K, et al. Computed tomography lymphography with intrapulmonary injection of iopamidol for sentinel lymph node localization. Invest Radiol. 2004;39:313–24.

    CAS  PubMed  Google Scholar 

  91. Dooms GC, Hricak H, Moseley ME, et al. Characterization of lymphadenopathy by magnetic resonance relaxation times: preliminary results. Radiology. 1985;155:691–7.

    CAS  PubMed  Google Scholar 

  92. Heiberg EV, Perman WH, Herrmann VM, et al. Dynamic sequential 3D gadolinium-enhanced MRI of the whole breast. Magn Reson Imaging. 1996;14:337–48.

    Google Scholar 

  93. Murray AD, Staff RT, Redpath TW, et al. Dynamic contrast enhanced MRI of the axilla in women with breast cancer: comparison with pathology of excised nodes. Br J Radiol. 2002;75:220–8.

    CAS  PubMed  Google Scholar 

  94. Kvistad KA, Rydland J, Smethurst HB, et al. Axillary lymph node metastases in breast cancer: preoperative detection with dynamic contrast-enhanced MRI. Eur Radiol. 2000;10:1464–71.

    CAS  PubMed  Google Scholar 

  95. Fischbein NJ, Noworolski SM, Henry RG, et al. Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2003;24:301–11.

    PubMed  Google Scholar 

  96. Lohrmann C, Foeldi E, Speck O, et al. High-resolution MR lymphangiography in patients with primary and secondary lymphedema. AJR Am J Roentgenol. 2006;187:556–61.

    Google Scholar 

  97. Liu N, Zhang Y. Magnetic resonance lymphangiography for the study of lymphatic system in lymphedema. J Reconstr Microsurg. 2016;32:66–71.

    PubMed  Google Scholar 

  98. Notohamiprodjo M, Weiss M, Baumeister RG, et al. MR lymphangiography at 3.0 T: correlation with lymphoscintigraphy. Radiology. 2012;264:78–87.

    PubMed  Google Scholar 

  99. Lohrmann C, Felmerer G, Foeldi E, et al. MR lymphangiography for the assessment of the lymphatic system in patients undergoing microsurgical reconstructions of lymphatic vessels. Microvasc Res. 2008;76:42–5.

    PubMed  Google Scholar 

  100. Jeon JY, Lee SH, Shin MJ, et al. Three-dimensional isotropic fast spin-echo MR lymphangiography of T1-weighted and intermediate-weighted pulse sequences in patients with lymphoedema. Clin Radiol. 2016;71:e56–63.

    CAS  PubMed  Google Scholar 

  101. Kiang SC, Ahmed KA, Barnes S, et al. Direct contrast-enhanced magnetic resonance lymphangiography in the diagnosis of persistent occult chylous effusion leak after thoracic duct embolization. J Vasc Surg Venous Lymphat Disord. 2019;7:251–7.

    Google Scholar 

  102. Hong Y, Xiang L, Hu Y, et al. Interstitial magnetic resonance lymphography is an effective diagnostic tool for the detection of lymph node metastases in patients with cervical cancer. BMC Cancer. 2012;12:360. https://doi.org/10.1186/1471-2407-12-360.

  103. Bae JS, Yoo RE, Choi SH, et al. Evaluation of lymphedema in upper extremities by MR lymphangiography: comparison with lymphoscintigraphy. Magn Reson Imaging. 2018;49:63–70.

    Google Scholar 

  104. Czarniecki M, Pesapane F, Wood BJ, et al. Ultra-small superparamagnetic iron oxide contrast agents for lymph node staging of high-risk prostate cancer. Transl Androl Urol. 2018;7:S453–S61.

    Google Scholar 

  105. Harisinghani MG, Saini S, Slater GJ, et al. MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic iron oxide (Combidex): preliminary observations. J Magn Reson Imaging. 1997;7:161–3.

    Google Scholar 

  106. Bellin MF, Roy C, Kinkel K, et al. Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles—initial clinical experience. Radiology. 1998;207:799–808.

    Google Scholar 

  107. Anzai Y, Blackwell KE, Hirschowitz SL, et al. Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology. 1994;192:709–15.

    Google Scholar 

  108. Anzai Y, Piccoli CW, Outwater EK, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology. 2003;228:777–88.

    Google Scholar 

  109. Fujimoto Y, Okuhata Y, Tyngi S, et al. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol Pharm Bull. 2000;23:97–100.

    Google Scholar 

  110. Misselwitz B, Schmitt-Willich H, Michaelis M, et al. Interstitial magnetic resonance lymphography using a polymeric T1 contrast agent: initial experience with Gadomer-17. Invest Radiol. 2002;37:146–51.

    Google Scholar 

  111. Pathak AP, Artemov D, Neeman M, et al. Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype. Cancer Res. 2006;66:5151–8.

    Google Scholar 

  112. Akita S, Mitsukawa N, Kazama T, et al. Comparison of lymphoscintigraphy and indocyanine green lymphography for the diagnosis of extremity lymphoedema. J Plast Reconstr Aesthet Surg. 2013;66:792–8.

    Google Scholar 

  113. Kitai T, Inomoto T, Miwa M, et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–5.

    Google Scholar 

  114. Suami H, Heydon-White A, Mackie H, et al. A new indocyanine green fluorescence lymphography protocol for identification of the lymphatic drainage pathway for patients with breast cancer-related lymphoedema. BMC Cancer. 2019;19:985. https://doi.org/10.1186/s12885-019-6192-1.

  115. Yamamoto T, Yoshimatsu H, Narushima M, et al. Indocyanine green lymphography findings in primary leg lymphedema. Eur J Vasc Endovasc Surg. 2015;49:95–102.

    Google Scholar 

  116. Yamamoto T, Narushima M, Doi K, et al. Characteristic indocyanine green lymphography findings in lower extremity lymphedema: the generation of a novel lymphedema severity staging system using dermal backflow patterns. Plast Reconstr Surg. 2011;127:1979–86.

    Google Scholar 

  117. Kaburagi T, Takeuchi H, Oyama T, et al. Intraoperative fluorescence lymphography using indocyanine green in a patient with chylothorax after esophagectomy: report of a case. Surg Today. 2013;43:206–10.

    Google Scholar 

  118. Matsutani T, Hirakata A, Nomura T, et al. Transabdominal approach for chylorrhea after esophagectomy by using fluorescence navigation with indocyanine green. Case Rep Surg. 2014;2014:464017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola A. Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sollini, M. et al. (2020). Methodological Aspects of Lymphoscintigraphy: Bicompartmental Versus Monocompartmental Radiocolloid Administration. In: Mariani, G., Vidal-Sicart, S., Valdés Olmos, R. (eds) Atlas of Lymphoscintigraphy and Sentinel Node Mapping. Springer, Cham. https://doi.org/10.1007/978-3-030-45296-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45296-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45295-7

  • Online ISBN: 978-3-030-45296-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics