Skip to main content

Cell Motility and Locomotion by Shape Control

  • Chapter
  • First Online:
Book cover The Mathematics of Mechanobiology

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2260))

Abstract

Mathematical modeling and quantitative study of biological motility is producing new biophysical insight and opportunities for discoveries at the level of both fundamental science and technology. One example is the elucidation of how complex behavior of simple organisms emerges from specific (and sophisticated) body architectures, and how this is affected by environmental cues. Moreover, the two-directional interaction between biology and mechanics is promoting new approaches to problems in engineering and in the life sciences: understand biology by constructing bio-inspired machines, build new machines thanks to bio-inspiration.

This article contains an introduction to the mathematical study of swimming locomotion of unicellular organisms (e.g., unicellular algae). We use the tools of geometric control theory to identify some general principles governing life at low Reynolds numbers, that can guide the design of engineered devices trying to replicate the successes of their biological counterparts. Locomotion strategies employed by biological organism are, in fact, a rich source of inspiration for studying mechanisms for shape control. We focus on morphing mechanisms based on Gauss’ theorema egregium, which shows that the curvature of a thin shell can be controlled through lateral modulations of stretches induced in its mid-surface. We discuss some examples of this Gaussian morphing principle both in nature and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Agostinelli, F. Alouges, A. De Simone, Peristaltic waves as optimal gaits in metameric bio-inspired robots. Front. Robot. and AI 5, 99 (2018)

    Google Scholar 

  2. D. Agostinelli, A. Lucantonio, G. Noselli, A. DeSimone, Nutations in growing plant shoots: the role of elastic deformations due to gravity loading. J. Mech. Phys. Solids 136, 103702 (2019)

    MathSciNet  Google Scholar 

  3. D. Agostinelli, R. Cerbino, J. Del Alamo, A. DeSimone, A. Hoehn, C. Micheletti, G. Noselli, E. Sharon, J. Yeomans, Micromotility: state of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Math. Eng. (2020) https://doi.org/10.3934/mine.2020011

  4. V. Agostiniani, A. DeSimone, Γ-convergence of energies for nematic elastomers in the small strain limit. Contin. Mech. Thermodyn. 23(3), 257–274 (2011)

    MathSciNet  MATH  Google Scholar 

  5. V. Agostiniani, A. DeSimone, A. Lucantonio, D. Lucic, Foldable structures made of hydrogel bilayers. Math. Eng. 1, 204–223 (2018). https://doi.org/10.3934/mine.2018.1.204

    MATH  Google Scholar 

  6. H. Aharoni, Y. Abraham, R. Elbaum, E. Sharon, R. Kupferman, Emergence of spontaneous twist and curvature in non-Euclidean rods: application to Erodium plant cells. Phys. Rev. Lett. 108, 238106 (2012)

    Google Scholar 

  7. H. Aharoni, E. Sharon, R. Kupferman, Geometry of thin nematic elastomer sheets. Phys. Rev. Lett. 113, 257801 (2014)

    Google Scholar 

  8. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th ed. (Garland Science, New York, 2014)

    Google Scholar 

  9. F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18(3), 277–302 (2008)

    MathSciNet  MATH  Google Scholar 

  10. F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for axisymmetric microswimmers. Eur. Phys. J. E 28(3), 279–284 (2009)

    Google Scholar 

  11. F. Alouges, A. Desimone, L. Heltai, Numerical strategies for stroke optimization of axisymmetric microswimmers. Math. Models Methods Appl. Sci. 21(2), 361–387 (2011)

    MathSciNet  MATH  Google Scholar 

  12. F. Alouges, A. DeSimone, L. Giraldi, M. Zoppello, Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers. Int. J. Non Linear Mech. 56, 132–141 (2013)

    Google Scholar 

  13. F. Alouges, A. DeSimone, L. Heltai, A. Lefebvre, B. Merlet, Optimally swimming stokesian robots. Discrete Contin. Dynam. Systems B 18, 1189–1215 (2013)

    MathSciNet  MATH  Google Scholar 

  14. F. Alouges, A. DeSimone, L. Giraldi, M. Zoppello, Can magnetic multilayers propel artificial microswimmers mimicking sperm cells? Soft Rob. 2, 117–128 (2015)

    Google Scholar 

  15. F. Alouges, A. Desimone, L. Giraldi, Y. Or, O. Wiezel, Energy-optimal strokes for multi-link microswimmers: Purcell’s loops and Taylor’s waves reconciled. New J. Phys. 21(4), 043050 (2019)

    Google Scholar 

  16. D. Ambrosi, M.B. Amar, C.J. Cyron, A. DeSimone, A. Goriely, J.D. Humphrey, E. Kuhl, Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16(157), 20190233 (2019)

    Google Scholar 

  17. M. Arroyo, A. DeSimone, Shape control of active surfaces inspired by the movement of euglenids. J. Mech. Physics Solids 62, 99–112 (2014)

    MathSciNet  MATH  Google Scholar 

  18. M. Arroyo, D. Milan, L. Heltai, A. DeSimone, Reverse engineering the euglenoid movement. Proc. Nat. Acad. Sci. USA 109, 17874–17879 (2012)

    Google Scholar 

  19. M. Barchiesi, A. DeSimone, Frank energy for nematic elastomers: a nonlinear model. ESAIM Control Optim. Calc. Var. 21(2), 372–377 (2015)

    MathSciNet  MATH  Google Scholar 

  20. H.C. Berg, D.A. Brown, Chemotaxis in escherichia coli analysed by three-dimensional tracking. Nature 239(5374), 500–504 (1972)

    Google Scholar 

  21. M. Bergert, A. Erzberger, R.A. Desai, I.M. Aspalter, A.C. Oates, G. Charras, G. Salbreux, E.K. Paluch, Force transmission during adhesion-independent migration. Nat. Cell Biol. 17(4), 524 (2015)

    Google Scholar 

  22. L. Berti, L. Giraldi, C. Prud’Homme, Swimming at Low Reynolds Number. ESAIM: Proceedings and Surveys, EDP Sciences, 2019, pp. 1–10

    Google Scholar 

  23. P. Bladon, E.M. Terentjev, M. Warner, Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E 47, R3838–R3840 (1993)

    Google Scholar 

  24. A. Bressan, Impulsive control of lagrangian systems and locomotion in fluids. Discrete Contin. Dynam. Systems 20(1), 1 (2008)

    Google Scholar 

  25. A.B.C. Buskermolen, H. Suresh, S.S. Shishvan, A. Vigliotti, A. DeSimone, N.A. Kurniawan, C.V.C. Bouten, V.S. Deshpande, Entropic forces drive cellular contact guidance. Biophys. J. 116(10), 1994–2008 (2019)

    Google Scholar 

  26. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3(5), 307 (2004)

    Google Scholar 

  27. L. Cardamone, A. Laio, V. Torre, R. Shahapure, A. DeSimone, Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions. Proc. Natl. Acad. Sci. 108(34), 13978–13983 (2011)

    Google Scholar 

  28. D. Carroll, E. Hankins, E. Kose, I. Sterling, A survey of the differential geometry of discrete curves. Math. Intell. 36(4), 28–35 (2014)

    MathSciNet  MATH  Google Scholar 

  29. A.N. Caruso, A. Cvetkovic, A. Lucantonio, G. Noselli, A. DeSimone, Spontaneous morphing of equibiaxially pre-stretched elastic bilayers: the role of sample geometry. Int. J. Mech. Sci. 149, 481–486 (2018)

    Google Scholar 

  30. B. Chan, N.J. Balmforth, A.E. Hosoi, Building a better snail: lubrication and adhesive locomotion. Phys. Fluids 17(11), 113101 (2005)

    Google Scholar 

  31. G. Charras, E. Paluch, Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9(9), 730 (2008)

    Google Scholar 

  32. S. Childress, Mechanics of Swimming and Flying, vol. 2 (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

  33. G. Cicconofri, A. DeSimone, A study of snake-like locomotion through the analysis of a flexible robot model. Proc. R. Soc. London, Ser. A Math. Phys. Eng. Sci. 471(2184), 20150054 (2015)

    Google Scholar 

  34. G. Cicconofri, A. DeSimone, Motion planning and motility maps for flagellar microswimmers. Eur. Phys. J. E 39, 72 (2016)

    Google Scholar 

  35. G. Cicconofri, A. DeSimone, Modelling biological and bio-inspired swimming at microscopic scales: recent results and perspectives. Comput. Fluids 179, 799–805 (2019)

    MathSciNet  MATH  Google Scholar 

  36. G. Cicconofri, M. Arroyo, G. Noselli, A. DeSimone, Morphable structures from unicellular organisms with active, shape-shifting envelopes: variations on a theme by Gauss. Int. J. Non Linear Mech. 118, 103278 (2020)

    Google Scholar 

  37. S. Conti, A. DeSimone, G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50(7), 1431–1451 (2002)

    MathSciNet  MATH  Google Scholar 

  38. G. Corsi, A. DeSimone, C. Maurini, S. Vidoli, A neutrally-stable shell in a Stokes flow: a rotational Taylor sheet. Proc. R. Soc. A 475, 20190178 (2019)

    MathSciNet  Google Scholar 

  39. S.M. Coyle, E.M. Flaum, H. Li, D. Krishnamurthy, M. Prakash, Coupled active systems encode emergent behavioral dynamics of the unicellular predator Lacrymaria olor. Curr. Biol. 29(22), 3838–3850. e3 (2019)

    Google Scholar 

  40. G. Dal Maso, A. DeSimone, M. Morandotti, An existence and uniqueness result for the motion of self-propelled micro-swimmers. SIAM J. Math. Anal. 43, 1345–1368 (2011)

    MathSciNet  MATH  Google Scholar 

  41. C. Darwin, The Power of Movement in Plants (John Murray, London, 1880)

    Google Scholar 

  42. A. DeSimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30(5), 591–603 (1995)

    MathSciNet  MATH  Google Scholar 

  43. A. DeSimone, Energetics of fine domain structures. Ferroelectrics 222(1–4), 275–284 (1999)

    Google Scholar 

  44. A. DeSimone, Spontaneous bending of pre-stretched bilayers. Meccanica 53, 511–518 (2018)

    MathSciNet  MATH  Google Scholar 

  45. A. DeSimone, G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161(3), 181–204 (2002)

    MathSciNet  MATH  Google Scholar 

  46. A. DeSimone, L. Teresi, Elastic energies for nematic elastomers. Eur. Phys. J. E 29(2), 191–204 (2009)

    Google Scholar 

  47. A. DeSimone, A. Tatone, Crawling motility through the analysis of model locomotors: two case studies. Eur. Phys. J. E 35(9), 85 (2012)

    Google Scholar 

  48. A. DeSimone, F. Guarnieri, G. Noselli, A. Tatone, Crawlers in viscous environments: linear vs non-linear rheology. Int. J. Non Linear Mech. 56, 142–147 (2013)

    Google Scholar 

  49. A. DeSimone, P. Gidoni, G. Noselli, Liquid crystal elastomer strips as soft crawlers. J. Mech. Phys. Solids 84, 254–272 (2015)

    MathSciNet  Google Scholar 

  50. M.P. do Carmo, Differential Geom. of Curves and Surfaces. Paperback (Prentice-Hall, Inc, Englewood Cliffs, 1976)

    Google Scholar 

  51. K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Duval, Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 168101 (2010)

    Google Scholar 

  52. A. Fukunaga, K. Urayama, T. Takigawa, A. DeSimone, L. Teresi, Dynamics of electro-opto-mechanical effects in swollen nematic elastomers. Macromolecules 41(23), 9389–9396 (2008)

    Google Scholar 

  53. E.A. Gaffney, H. Gadelha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501–528 (2011)

    MathSciNet  MATH  Google Scholar 

  54. P. Gidoni, G. Noselli, A. DeSimone, Crawling on directional surfaces. Int. J. Non Linear Mech. 61, 65–73 (2014)

    Google Scholar 

  55. N. Giuliani, N. Heltai, A. DeSimone, Predicting and optimizing micro-swimmer performance from the hydrodynamics of its components: the relevance of interactions. Soft Rob. 5(4) (2018)

    Google Scholar 

  56. R.E. Goldstein, Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 343–375 (2015)

    MathSciNet  Google Scholar 

  57. H. Gu, L. Bumke, C. Chluba, E. Quandt, R.D. James, Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21(3), 265–277 (2018)

    Google Scholar 

  58. J.S. Guasto, K.A. Johnson, J.P. Gollub, Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102 (2010)

    Google Scholar 

  59. Z.V. Guo, L. Mahadevan, Limbless undulatory propulsion on land. Proc. Natl. Acad. Sci. 105(9), 3179–3184 (2008)

    Google Scholar 

  60. P. Holmes, R.J. Full, D. Koditschek, J. Guckenheimer, The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    MathSciNet  MATH  Google Scholar 

  61. D.L. Hu, J. Nirody, T. Scott, M.J. Shelley, The mechanics of slithering locomotion. Proc. Natl. Acad. Sci. 106(25), 10081–10085 (2009)

    Google Scholar 

  62. A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Google Scholar 

  63. A.Y. Khapalov, Local controllability for a swimming model. SIAM J. Control. Optim. 46(2), 655–682 (2007)

    MathSciNet  MATH  Google Scholar 

  64. A. Khapalov, P. Cannarsa, F.S. Priuli, G. Floridia, Well-posedness of 2-d and 3-d swimming models in incompressible fluids governed by navier–stokes equations. J. Math. Anal. Appl. 429(2), 1059–1085 (2015)

    MathSciNet  MATH  Google Scholar 

  65. J. Kim, J.A. Hanna, M. Byun, C.D. Santangelo, R.C. Hayward, Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073), 1201–1205 (2012)

    MathSciNet  MATH  Google Scholar 

  66. S. Kim, C. Laschi, B. Trimmer, Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Google Scholar 

  67. Y. Klein, E. Efrati, E. Sharon, Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007)

    MathSciNet  MATH  Google Scholar 

  68. J.H. Lai, J.C. del Alamo, J. Rodríguez-Rodríguez, J.C. Lasheras, The mechanics of the adhesive locomotion of terrestrial gastropods. J. Exp. Biol. 213(22), 3920–3933 (2010)

    Google Scholar 

  69. E. Lauga, A.E. Hosoi, Tuning gastropod locomotion: modeling the influence of mucus rheology on the cost of crawling. Phys. Fluid. 18(11), 113102 (2006)

    Google Scholar 

  70. E. Lauga, T.R. Powers, The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72(9), 096601 (2009)

    Google Scholar 

  71. B.S Leander, G. Lax, A. Karnkowska, A.G.B. Simpson, Euglenida. In: Handbook of the Protists (Springer, Cham, 2017)

    Google Scholar 

  72. Sir J. Lighthill. Mathematical Biofluiddynamics (SIAM, Philadelphia, 1975)

    MATH  Google Scholar 

  73. J. Lin, D. Nicastro, Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360(6387), eaar1968 (2018)

    Google Scholar 

  74. C.B. Lindemann, K.A. Lesich, Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 123(4), 519–528 (2010)

    Google Scholar 

  75. J. Lohéac, J.-F. Scheid, M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers. Acta Appl. Math. 123(1), 175–200 (2013)

    MathSciNet  MATH  Google Scholar 

  76. K.E. Machin, Wave propagation along flagella. J. Exp. Biol. 35(4), 796–806 (1958)

    Google Scholar 

  77. R. Marchello, M. Morandotti, H. Shum, M. Zoppello, The n-link swimmer in three dimensions: controllability and optimality results. arXiv preprint arXiv:1912.04998 (2019)

    Google Scholar 

  78. C.D. Modes, M. Warner, Negative Gaussian curvature from induced metric changes. Phys. Rev. E 92, 010401 (2015)

    Google Scholar 

  79. F. Montenegro-Johnson, E. Lauga, Optimal swimming of a sheet. Phys. Rev. E 89, 060701(R) (2014)

    Google Scholar 

  80. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, vol. 91 (American Mathematical Society, Providence, 2002)

    MATH  Google Scholar 

  81. A. Montino, A. DeSimone, Three-sphere low-Reynolds-number swimmer with a passive elastic arm. Eur. Phys. J. E 38(42), 1–10 (2015)

    Google Scholar 

  82. C. Mostajeran, Curvature generation in nematic surfaces. Phys. Rev. E 91, 062405 (2015)

    MathSciNet  Google Scholar 

  83. A. Najafi, R. Golestanian, Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69(6), 062901 (2004)

    Google Scholar 

  84. G. Noselli, M. Arroyo, A. DeSimone, Smart helical structures inspired by the pellicle of euglenids. J. Mech. Phys. Solids 123, 234–246 (2019)

    MathSciNet  Google Scholar 

  85. G. Noselli, A. Beran, M. Arroyo, A. DeSimone, Swimming Euglena respond to confinement with a behavioral change enabling effective crawling. Nat. Phys. 15, 496–502 (2019)

    Google Scholar 

  86. C. Pehlevan, P. Paoletti, L. Mahadevan, Integrative neuromechanics of crawling in D. melanogaster larvae. Elife 5, e11031 (2016)

    Google Scholar 

  87. E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45(1), 3–11 (1977)

    Google Scholar 

  88. P. Recho, T. Putelat, L. Truskinovsky, Contraction-driven cell motility. Phys. Rev. Lett. 111(10), 108102 (2013)

    Google Scholar 

  89. P. Recho, A. Jerusalem, A. Goriely, Growth, collapse, and stalling in a mechanical model for neurite motility. Phys. Rev. E 93(3), 032410 (2016)

    Google Scholar 

  90. M. Rossi, G. Cicconofri, A. Beran, G. Noselli, A. DeSimone, Kinematics of flagellar swimming in Euglena gracilis: Helical trajectories and flagellar shapes. Proc. Natl. Acad. Sci. U. S. A. 114(50), 13085–13090 (2017)

    Google Scholar 

  91. C. Santangelo, Buckling thin disks and ribbons with non-Euclidean metrics. Europhys. Lett. 86, 34003 (2011)

    Google Scholar 

  92. P. Sartori, V.F. Geyer, A. Scholich, F. Jülicher, J. Howard, Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. Elife 5, e13258 (2016)

    Google Scholar 

  93. Y. Sawa, K. Urayama, T. Takigawa, A. DeSimone, L. Teresi, Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment. Macromolecules 43, 4362–4369 (2010)

    Google Scholar 

  94. P. Sens, Rigidity sensing by stochastic sliding friction. Europhys. Lett. 104(3), 38003 (2013)

    Google Scholar 

  95. A. Shahaf, E. Efrati, R. Kupferman, E. Sharon, Geometry and mechanics in the opening of chiral seed pods. Science 333(6050), 1726–1730 (2011)

    Google Scholar 

  96. D. Tam, A.E. Hosoi, Optimal stroke patterns for Purcell’s three-link swimmer. Phys. Rev. Lett. 98, 068105 (2007)

    Google Scholar 

  97. D. Tam, A.E. Hosoi, Optimal kinematics and morphologies for spermatozoa. Phys. Rev. E 83, 045303(R) (2011)

    Google Scholar 

  98. G.I. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 209, 447–461 (1951)

    MathSciNet  MATH  Google Scholar 

  99. G.I. Taylor, Low Reynolds number flows, movie for The National Committee for Fluid Mechanics Films (1966). http://web.mit.edu/hml/ncfmf.html. Online accessed 6 Nov 2019

  100. S. Timoshenko, Analysis of bi-metal thermostats. J. Optical Soc. Am. 11, 233–255 (1925)

    Google Scholar 

  101. B. Tondu, Modelling of the McKibben artificial muscle: a review. J. Intell. Mater. Syst. Struct. 23, 225–253 (2012)

    Google Scholar 

  102. Q. Wang, H. Othmer, The performance of discrete models of low Reynolds number swimmers. Math. Biosci. Eng. 12, 1303 (2015)

    MathSciNet  MATH  Google Scholar 

  103. Q. Wang, H.G. Othmer, Computational analysis of amoeboid swimming at low Reynolds number. J. Math. Biol. 72(7), 1893–1926 (2016)

    MathSciNet  MATH  Google Scholar 

  104. M. Warner, E.M. Terentjev, Liquid Crystal Elastomers, vol. 120 (Oxford University Press, Oxford, 2007)

    Google Scholar 

  105. M. Warner, C.D. Modes, D. Corbett, Curvature in nematic elastica responding to light and heat. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466(2122), 2975–2989 (2010)

    MATH  Google Scholar 

  106. T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mat. 14(11), 1087 (2015)

    Google Scholar 

  107. H. Wu, A. Farutin, W.-F. Hu, M. Thiébaud, S. Rafaï, P. Peyla, M.-C. Lai, C. Misbah, Amoeboid swimming in a channel. Soft Matt. 12(36), 7470–7484 (2016)

    Google Scholar 

  108. S. Zhang, R.D. Guy, J.C. Lasheras, J.C. del Álamo, Self-organized mechano-chemical dynamics in amoeboid locomotion of physarum fragments. J. Phys. D. Appl. Phys. 50(20), 204004 (2017)

    Google Scholar 

  109. J. Zhu, A. Mogilner, Mesoscopic model of actin-based propulsion. PLoS Comput. Biol. 8(11), e1002764 (2012)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the European Research Council through the ERC Advanced Grant 340685-MicroMotility. These lecture notes draw freely from results obtained with several co-authors over the last 10 years, and published in the papers referenced in the bibliography (in particular, references [35, 36]). The collaboration with them has been a source of endless joy and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio DeSimone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeSimone, A. (2020). Cell Motility and Locomotion by Shape Control. In: Ambrosi, D., Ciarletta, P. (eds) The Mathematics of Mechanobiology. Lecture Notes in Mathematics(), vol 2260. Springer, Cham. https://doi.org/10.1007/978-3-030-45197-4_1

Download citation

Publish with us

Policies and ethics