Skip to main content

Understanding the Interaction of Nanopesticides with Plants

  • Chapter
  • First Online:
Nanopesticides

Abstract

Understanding the interactions between engineered nanomaterials and the environment is essential for unbiased assessments of their agricultural applications. Nano-based pesticides can potentially be safer and/or more efficient than their conventional analogs. However, there is limited information about how nanopesticides influence physiology and metabolism during their interactions with plants, particularly, related to its mode of action. The main question herein is about the interaction between nanopesticides and plants. In this chapter, we start from a theoretical discussion on the complex organization of biological systems, offering a variety of examples showing the effects of nanopesticides from uptake to the mode of action. Moreover, we discuss different examples, how physiological and metabolic responses can help us to understand the behavior of plants exposed to nano-based pesticides. Finally, we demonstrate that prediction models can be used as a routine tool for monitoring and classifying plant response according to their degree of resistance or tolerance to determined nanopesticide, aiming to understand the specific characteristics of nanopesticides into plant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adisa IO, Pullagurala VLR, Peralta-Videa JR, Dimkpa CO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6:2002–2030

    CAS  Google Scholar 

  • Ahsan SM, Rao CM, Ahmad MF (2018) Nanoparticle-protein interaction: the significance and role of protein corona. Adv Exp Med Biol 1048:175–198

    CAS  PubMed  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effects of nanoparticles size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  PubMed  Google Scholar 

  • Ambure P, Halder AK, Gonzalez-Diaz H, Cordeiro M (2019) QSAR-Co: an open source software for developing robust multitasking or multitarget classification-based QSAR models. J Chem Inf Model 59(6):2538

    CAS  PubMed  Google Scholar 

  • Andreotti F, Mucha AP, Caetano C, Rodríguez P, Gomes CR, Almeida CMR (2015) Interactions between salt marsh plants and Cudr nanoparticles–effects on metal uptake and phytoremediation processes. Ecotoxicol Environ Saf 120:303–309

    CAS  PubMed  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    CAS  Google Scholar 

  • Ashitha A, Mathew J (2019) Characteristics and types of slow/controlled release of pesticides. In: Rakhimol KR, Thomas S, Volova T, Jayachandran K (eds) Controlled release of pesticides for sustainable agriculture. Springer, Cham, pp 141–153

    Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport plant. Cell Environ 32:577–584

    CAS  Google Scholar 

  • Banares MA, Haase A, Tran L, Lobaskin V, Oberdorster G, Rallo R, Leszczynski J, Hoet P, Korenstein R, Hardy B, Puzyn T (2017) CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology. Nanotoxicology 11(7):839–845

    CAS  PubMed  Google Scholar 

  • Banu H, Joseph MC, Nisar MN (2018) In-silico approach to investigate death domains associated with nano-particle-mediated cellular responses. Comput Biol Chem 75:11–23

    CAS  PubMed  Google Scholar 

  • Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32

    PubMed  PubMed Central  Google Scholar 

  • Barazzouk S, Kamat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109:716–723

    CAS  PubMed  Google Scholar 

  • Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563:956–964

    PubMed  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25:12329–12341

    CAS  Google Scholar 

  • Bhar R, Kaur G, Mehta SK (2018) Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles. J Biomol Struct Dyn 36(14):3614–3622

    CAS  PubMed  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138(4):447–462

    CAS  PubMed  Google Scholar 

  • Bombo AB, Pereira AES, Lusa MG, Oliveira EM, Oliveira JL, Campos EVR, Jesus MB, Oliveira HC, Fraceto LF, Mayer JLS (2019) A mechanistic view of interactions of a nanoherbicide with target organism. J Agric Food Chem 67(16):4453–4462

    CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants, 1st edn. Courier Companies, Maryland, 1367p

    Google Scholar 

  • Burello E, Worth A (2011a) Computational nanotoxicology: predicting toxicity of nanoparticles. Nat Nanotechnol 6(3):138–139

    CAS  PubMed  Google Scholar 

  • Burello E, Worth AP (2011b) QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(3):298–306

    CAS  PubMed  Google Scholar 

  • Burello E, Worth AP (2011c) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5(2):228–235

    CAS  PubMed  Google Scholar 

  • Cai F, Wu X, Zhang H, Shen X, Zhang M, Chen W, Gao Q, White JC, Tao S, Wang X (2017) Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5:101–108

    Google Scholar 

  • Campos EVR, Oliveira JL, Fraceto LF, Grillo R (2018) Global market of nanomaterials and colloidal formulations for agriculture: an overview. In: Singh HB, Faceto LF, Lima R, Mishra S (eds) Emerging trends in agri-nanotechnology: fundamental and applied aspects, 1st edn. Centre for Agriculture and Biosciences International (CABI), Wallingford, pp 1–312

    Google Scholar 

  • Cannon W (1929) The wisdom of the body. Physiol Rev 9:399–431

    Google Scholar 

  • Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X (2017) Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environ Sci Nano 4:1086–1094

    CAS  Google Scholar 

  • Cerdervall T, Lynch I, Lindman S, Berggärd T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 366:1987–1998

    PubMed  PubMed Central  Google Scholar 

  • Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880

    CAS  PubMed  Google Scholar 

  • Chen R, Riviere JE (2017) Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(3):e1440. https://doi.org/10.1002/wnan.1440

    Article  CAS  Google Scholar 

  • Chibber S, Ahmad I (2016) Molecular docking, a tool to determine interaction of CuO and TiO2 nanoparticles with human serum albumin. Biochem Biophys Rep 6:63–67

    PubMed  PubMed Central  Google Scholar 

  • Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9(3):1080–1084

    CAS  PubMed  Google Scholar 

  • Chu ZQ, Zhang SL, Zhang BK, Zhang CY, Fang CY, Rehor I, Cigler P, Chang HC, Lin G, Liu RB, Li Q (2014) Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 4:4495

    PubMed  PubMed Central  Google Scholar 

  • Chung I, Rekha K, Venkidasamy B, Thiruvengadam M (2019) Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut 230:48

    Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Perez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnology 8(1):26–28

    PubMed  PubMed Central  Google Scholar 

  • Clemente Z, Grillo R, Jonsson C, Santos NZP, Feitosa LOL, Fraceto RLF (2014) Ecotoxicological evaluation of poly(epsilon-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917

    CAS  PubMed  Google Scholar 

  • Concu R, Kleandrova VV, Speck-Planche A, Cordeiro M (2017) Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology 11(7):891–906

    CAS  PubMed  Google Scholar 

  • Conijn JG, Bindraban PS, Schröder JJ, Jongschaap REE (2018) Can our global food system meet food demand within planetary boundaries? Agric Ecosyst Environ 251:244–256

    CAS  Google Scholar 

  • Curtis EM, Bahrami AH, Weikl TR, Hall CK (2015) Modeling nanoparticle wrapping or translocation in bilayer membranes. Nanoscale 7(34):14505–14514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20

    CAS  PubMed  Google Scholar 

  • D’Rozario RSG, Wee CL, Wallace EJ, Sansom MSP (2009) The interaction of C60 and its derivatives with a lipid bilayer via molecular dynamics simulations. Nanotechnology 20(11):115102

    PubMed  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Google Scholar 

  • Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K et al (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8(12):1135–1143

    CAS  PubMed  Google Scholar 

  • Davis KJ (2016) Adaptive homeostasis. Mol Asp Med 49:1–7

    Google Scholar 

  • Dayem AA, Hossain MK, Lee SB, Kim K, Saha SK, Yang G, Choi HY, Cho S (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):E120

    Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Google Scholar 

  • Degrassi G, Bertani I, Devescovi G, Fabrizi A, Gatti A, Venturi V (2012) Response of pant-bacteria interaction models to nanoparticles. J Environ Qual 8:39–50

    Google Scholar 

  • Dekker JP, Van-Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–208

    CAS  PubMed  Google Scholar 

  • Deringer VL, Caro MA, Csanyi G (2019) Machine learning interatomic potentials as emerging tools for materials science. Adv Mater 31(46):e1902765

    PubMed  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 11(16):582–589

    Google Scholar 

  • Donaldson O (2013) Paraquat. In: Peterson ME, Talcott PA (eds) In small animal toxicology. Elsevier, St Louis, pp 731–739

    Google Scholar 

  • Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa L.): effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795

    CAS  PubMed  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    CAS  PubMed  Google Scholar 

  • El-bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nanoparticles a potential new insecticide for pest control. Appl Sci Rep 4(3):241–246

    Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    CAS  PubMed  Google Scholar 

  • Falco WF, Queiroz AM, Fernandes J, Botero ER, Falcão EA, Guimarães FEG, M’Peko JC, Oliveira SL, Colbeck I, Caires ARL (2015) Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A Chem 299:203–209

    CAS  Google Scholar 

  • Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL (2019) Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ 701:134816

    PubMed  Google Scholar 

  • Fan X, Xu J, Lavoie M, Peijnenburg WJGM, Zhu Y, Lu T, Fu Z, Zhu T, Qian H (2018) Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis Thaliana. Environ Pollut 233:633–641

    CAS  PubMed  Google Scholar 

  • Fazeli-Sangani M, Owens G, Nazari B, Astaraei A, Fotovat A, Emami H (2019) Different modelling approaches for predicting titanium dioxide nanoparticles mobility in intact soil media. Sci Total Environ 665:1168–1181

    CAS  PubMed  Google Scholar 

  • Fjodorova N, Novic M, Gajewicz A, Rasulev B (2017) The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Nanotoxicology 11(4):475–483

    CAS  PubMed  Google Scholar 

  • Foroozandeh P, Aziz AA (2018) Insights into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 13:339

    PubMed  PubMed Central  Google Scholar 

  • Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure-activity relationship modeling. ACS Nano 4(10):5703–5712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fourches D, Pu D, Tropsha A (2011) Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High Throughput Screen 14(3):217–225

    CAS  PubMed  Google Scholar 

  • Fraceto LF, Grillo R, Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Google Scholar 

  • Furxhi I, Murphy F, Mullins M, Poland CA (2019) Machine learning prediction of nanoparticle in vitro toxicity: a comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicol Lett 312:157–166

    CAS  PubMed  Google Scholar 

  • Gajewicz A (2017) What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 9(24):8435–8448

    CAS  PubMed  Google Scholar 

  • Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, Luch A, Irfan MA, Landsiedel R, van der Zandle M, Bouwmeester H (2018) Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology 12(1):1–17

    CAS  PubMed  Google Scholar 

  • Galazzi RM, Arruda MAZ (2018) Evaluation of changes in the macro and micronutrients homeostasis of transgenic and non-transgenic soybean plants after cultivation with silver nanoparticles through ionomic approaches. J Trace Elem Med Biol 48:181–187

    CAS  PubMed  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    CAS  PubMed  Google Scholar 

  • Gomes SIL, Scott-Fordsmand J, Campos EVR, Grillo R, Fraceto LF, Amorin MJB (2019) On the safety of nanoformulations to non-target soil invertebrates – an atrazine case study. Environ Sci Nano 6:1950–1958

    CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    CAS  PubMed  Google Scholar 

  • Goudarzi N, Goodarzi M, Araujo MC, Galvao RK (2009) QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR. J Agric Food Chem 57(15):7153–7158

    CAS  PubMed  Google Scholar 

  • Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7:620–625

    CAS  PubMed  Google Scholar 

  • Grillo R, Santos NZP, Maruyama CR, Rosa AH, Lima R, Fraceto LF (2012) Poly(ε-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9

    PubMed  Google Scholar 

  • Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    CAS  PubMed  Google Scholar 

  • Grillo R, Clemente Z, Oliveira JL, Campos EV, Chalupe VC, Jonsson CM, Lima R, Sanches G, Nishisaka CS, Rosa AH, Oehlke K, Greiner JL, Fraceto LF (2015) Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. J Hazard Mater 286:562–572

    CAS  PubMed  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234

    CAS  PubMed  Google Scholar 

  • Grillo R, Jesus MB, Fraceto LF (2018) Editorial: environmental impact of nanotechnology: analyzing the present for building the future. Front Environ Sci 6:1–3

    Google Scholar 

  • Hastings J, Jeliazkova N, Owen G, Tsiliki G, Munteanu CR, Steinbeck C, Willighagen E (2015a) eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. J Biomed Semantics 6(1):10

    PubMed  PubMed Central  Google Scholar 

  • Hastings J, Jeliazkova N, Owen G, Tsiliki G, Munteanu CR, Steinbeck C, Willighagen E (2015b) eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. J Biomed Semantics 6(10):2–15

    Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Academic Press, Cambridge, pp 193–225

    Google Scholar 

  • Helma C, Rautenberg M, Gebele D (2017) Nano-lazar: read across predictions for nanoparticle toxicities with calculated and measured properties. Front Pharmacol 8:377

    PubMed  PubMed Central  Google Scholar 

  • Hess DF (2000) Light-dependent herbicides: an overview. Weed Sci 48:160–170

    CAS  Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234(1):35–45

    CAS  PubMed  Google Scholar 

  • Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Hubal EAC, Avery D, Barceló D, Behra R, Cohen Y, Deydier-Stephan L, Ferguson PL, Fernandes TF, Harthorn BH, Henderson M, Hoke RA, Hristozov D, Johnston JM, Kane AB, Kaputska L, Keller AA, Lenihan HS, Lovel W, Murphy CJ, Nisbet RM, Peterson EJ, Salinas ER, Scheringer M, Sharma M, Speed DE, Sultan Y, Westerhoff P, White JC, Wiesner MR, Wong EM, Xing B, Horan MS, Godwin HA, Nel AE (2016) Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol 50(12):6124–6145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    CAS  PubMed  Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S (2019) Fenton reaction assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Appl Mater Interfaces 11(33):29579–29592

    CAS  PubMed  Google Scholar 

  • Hristozov D, Gottardo S, Semenzin E, Oomen A, Bos P, Peijnenburg W, van Tongeren M, Nowack B, Hunt N, Brunelli A, Scott-Fprdsmand JJ, Tran L, Marcomini A (2016) Frameworks and tools for risk assessment of manufactured nanomaterials. Environ Int 95:36–53

    CAS  PubMed  Google Scholar 

  • Hu X, Lu K, Mu L, Kang J, Zhou Q (2014) Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 80:665–676

    CAS  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560

    CAS  PubMed  Google Scholar 

  • Jeliazkova N, Chomenidis C, Doganis P, Fadeel B, Grafstrom R, Hardy B, Hastings J, Hegi M, Jeliazkov V, Kochev N, Kohonen P, Munteanu CR, Sarimveis H, Smeets B, Sopasakis P, Tsiliki G, Vorgrimmler D, Willighagen E (2015) The eNanoMapper database for nanomaterial safety information. Beilstein J Nanotechnol 6:1609–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kah M, Holfman T (2014) Nanopesticides research; current trends and future priorities. Environ Int 63:224–235

    CAS  PubMed  Google Scholar 

  • Kathiravan A, Chandramohan M, Renganathan R, Sekar S (2009) Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles. Spectrochim Acta Part A: Mol Biomol Spectrosc 72:496–501

    CAS  Google Scholar 

  • Kavallieratos NG, Athanassiou CG, Peteinatos GG, Boukouvala MC, Benelli G (2018) Insecticidal effect and impact of fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environ Sci Pollut Res 25:10407–10417

    CAS  Google Scholar 

  • Kerbauy GB (2004) Fisiologia vegetal. Guanabara Koogan, Rio de Janeiro, 452p

    Google Scholar 

  • Khan MI, Alsaedi A, Hayat T, Khan NB (2019) Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation. Comput Methods Prog Biomed 179:104973

    Google Scholar 

  • Khodakovskaya M, Dervishi E (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ASC Nano 10(3):3221–3227

    Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Koeller M, Epple M (2010) Toxicity of silver nanoparticles increase during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    CAS  Google Scholar 

  • Kleandrova VV, Luan F, Gonzalez-Diaz H, Ruso JM, Speck-Planche A, Cordeiro MN (2014) Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ Sci Technol 48(24):14686–14694

    CAS  PubMed  Google Scholar 

  • Kovalishyn V, Abramenko N, Kopernyk I, Charochkina L, Metelytsia L, Tetko IV, Peijnenburg W, Kustov L (2018) Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food Chem Toxicol 112:507–517

    CAS  PubMed  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    CAS  PubMed  Google Scholar 

  • Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28(18):2876–2884

    CAS  PubMed  Google Scholar 

  • Lamon L, Asturiol D, Vilchez A, Ruperez-Illescas R, Cabellos J, Richarz A, Worth A (2019) Computational models for the assessment of manufactured nanomaterials: development of model reporting standards and mapping of the model landscape. Comput Toxicol 9:143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

    CAS  PubMed  Google Scholar 

  • Lazarovits J, Sindhwani S, Tavares AJ, Zhang Y, Song F, Audet J, Krieger J, Syed AM, Stordy B, Chan WCW (2019) Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13(7):8023–8034

    CAS  PubMed  Google Scholar 

  • Lelimousin M, Sansom MS (2013) Membrane perturbation by carbon nanotube insertion: pathways to internalization. Small 9:3639–3646

    CAS  PubMed  Google Scholar 

  • Li Y, Gu N (2010) Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B 114(8):2749–2754

    CAS  PubMed  Google Scholar 

  • Li H, Ye X, Guo X, Geng Z, Wang G (2016a) Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater 314:188–196

    CAS  PubMed  Google Scholar 

  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016b) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334

    CAS  PubMed  Google Scholar 

  • Li L, Xu Z, Kah M, Lin D, Filser J (2019a) Nanopesticides: a comprehensive assessment of environmental risk is needed before widespread agricultural application. Environ Sci Technol 53(14):7923–7924

    CAS  PubMed  Google Scholar 

  • Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J, Yin H (2019b) Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol 126:91–100

    CAS  PubMed  Google Scholar 

  • Liang Q (2013) Penetration of polymer-grafted nanoparticles through a lipid bilayer. Soft Matter 9:5594–5601

    CAS  Google Scholar 

  • Lima R, Feitosa LO, Grillo R, Pereira AES, Fraceto LF (2012) Evaluation of the genotoxicity of polymeric microparticles containing ametryn herbicide. J Environ Sci Eng 4:553–565

    Google Scholar 

  • Lòpez-Moreno ML, de la Rosa G, Hernàndez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    PubMed  PubMed Central  Google Scholar 

  • Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the Agri-tech revolution. Nat Nanotechnol 14:517–522

    CAS  PubMed  Google Scholar 

  • Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413

    CAS  PubMed  Google Scholar 

  • Luan F, Tang L, Zhang L, Zhang S, Monteagudo MC, Cordeiro M (2018) A further development of the QNAR model to predict the cellular uptake of nanoparticles by pancreatic cancer cells. Food Chem Toxicol 112:571–580

    CAS  PubMed  Google Scholar 

  • Ma W, Saccardo A, Roccatano D, Aboagye-Mensah D, Alkaseen M, Jewkes M, Di Nezza F, Baron M, Soloviev M, Ferrari E (2018) Modular assembly of proteins on nanoparticles. Nat Commun 9:1489

    PubMed  PubMed Central  Google Scholar 

  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102

    CAS  PubMed  Google Scholar 

  • Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR (2018) Influence of metal nanoparticles (NPs) on germination and yield of Oat (Avena sativa) and Berseem (Trifolium alexandrinum). Proc Natl Acad Sci India Sect B Biol Sci 88(2):595–607

    CAS  Google Scholar 

  • Manikandan A, Sathiyabama M (2016) Preparation of chitosan nanoparticles and its effects on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol 84:58–61

    CAS  PubMed  Google Scholar 

  • Mansoor N, Younus A, Jamil Y, Shahid M (2019) Impact of nanosized and bulk ZnO on germination and early growth response of Triticum aestivum. Pak J Agric Sci 56(4):879–884

    Google Scholar 

  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signaling. Arch Toxicol 85(7):733–741

    CAS  PubMed  Google Scholar 

  • Margenot AJ, Rippner DA, Dumlao MR, Nezami S, Green PG, Parikh SJ, McElrone AJ (2018) Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant Soil 431:333–345

    CAS  Google Scholar 

  • Martin CE, von Willert DJ (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa. Plant Biol 2(2):229–242

    Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José M (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matorin DN, Todorenko DA, Seifullina NK, Zayadan BK, Rubin AB (2013) Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology 82:809–814

    CAS  Google Scholar 

  • Mazzatorta P, Smiesko M, Lo Piparo E, Benfenati E (2005) QSAR model for predicting pesticide aquatic toxicity. J Chem Inf Model 45(6):1767–1774

    CAS  PubMed  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    PubMed  Google Scholar 

  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551

    CAS  Google Scholar 

  • Melagraki G, Afantitis A (2015) A risk assessment tool for the virtual screening of metal oxide nanoparticles through Enalos InSilicoNano platform. Curr Top Med Chem 15(18):1827–1836

    CAS  PubMed  Google Scholar 

  • Mikolajczyk A, Sizochenko N, Mulkiewicz E, Malankowska A, Rasulev B, Puzyn T (2019) A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale 11(24):11808–11818

    CAS  PubMed  Google Scholar 

  • Mingyu S, Fashui H, Chao L, Xiao W, Xiaoqing L, Liang C, Fengqing G, Zhongrui L (2007) Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 118:120–130

    PubMed  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152:403–410

    CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2015) Biochemical, anatomical and molecular level changes in cucumber (Cucumis sativus) seedlings exposed to copper oxide nanoparticles. Biologia 70:1575–1585

    Google Scholar 

  • Nangia S, Sureshkumar R (2012) Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 28(51):17666–17671

    CAS  PubMed  Google Scholar 

  • Nath A, Molnár MA, Das A, Bánvölgyi S, Márki E, Vatai G (2019) Agrochemicals from nanomaterials – synthesis, mechanisms of biochemical activities and application. In: Verma SK, Das AK (eds) Analysis, fate, and toxicity of engineered nanomaterials in plants, vol 84. Elsevier, Amsterdam, pp 263–312

    Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystem I and II. Annu Rev Plant Biol 57:521–565

    CAS  PubMed  Google Scholar 

  • Nguyen MH, Lee JS, Hwang IC, Park HJ (2014) Evaluation of penetration of nanocarriers into red pepper leaf using confocal laser scanning microscopy. Crop Prot 66:61–66

    CAS  Google Scholar 

  • Nieder JB, Bittl R, Brecht M (2010) Fluorescence studies into the effect of plasmonic interactions on protein function. Angew Chem Int Ed Engl 49(52):10217–10220

    CAS  PubMed  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas Perforans. ACS Nano 7:8972–8980

    CAS  PubMed  Google Scholar 

  • Oksel C, Winkler DA, Ma CY, Wilkins T, Wang XZ (2016) Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches. Nanotoxicology 10(7):1001–1012

    CAS  PubMed  Google Scholar 

  • Oliveira HC, Stolf MR, Martinez CB, Grillo R, de Jesus MB, Fraceto LF (2015) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10:e0132971

    PubMed  PubMed Central  Google Scholar 

  • Oliveira JL, Campos EVR, Pereira AES, Pasquoto T, Lima R, Grillo R, Andrade DJ, Santos FA, Faceto LF (2018) Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J Agric Food Chem 66(6):1330–1340

    PubMed  Google Scholar 

  • Pacheco I, Buzea C (2018) Nanoparticle uptake by plants: beneficial or detrimental? In: Faisal M, Saquib Q, Alatar A, Al-Khedhairy A (eds) Phytotoxicity of nanoparticles. Springer, Basel, p 60

    Google Scholar 

  • Panariti A, Miserocchi G, Rivolta I (2012) The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 5:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Dias BD, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nano-particles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    CAS  PubMed  Google Scholar 

  • Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:1–12

    Google Scholar 

  • Perreault F, Oukarroum A, Pirastru L, Sirois L, Gerson Matias W, Popovic R (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll fluorescence imaging in Lemna gibba. J Bot 2010:763142

    Google Scholar 

  • Peter SC, Dhanjal JK, Malik V, Radhakrishnan N, Jayakanthan M, Sundar D (2019) Quantitative structure-activity relationship (qsar): modeling approaches to biological applications. Encycl Bioinform Comput Biol 2:661–676

    Google Scholar 

  • Pontes MS, Grillo R, Graciano DE, Falco WF, Lima SM, Caires ARL, Andrade LHC, Santiago EF (2019) How does aquatic macrophyte Salvinia auriculata respond to nanoceria upon an increased CO2 source? A Fourier transform-infrared photoacoustic spectroscopy and chlorophyll a fluorescence study. Ecotoxicol Environ Saf 180:526–534

    CAS  PubMed  Google Scholar 

  • Pošćićć F, Mattiello A, Fellet G, Miceli F, Marchiol L (2016) Effects of cerium and titanium oxide nanoparticles in soil on the nutrient composition of barley (Hordeum vulgare L.) kernels. Int J Environ Res Public Health 13:577–592

    Google Scholar 

  • Preisler AC, Pereira AES, Campos EVR, Dalazen G, Fraceto LF, Oliveira HC (2020) Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Manag Sci 76(1):141–149

    CAS  PubMed  Google Scholar 

  • Puzyn T, Jeliazkova N, Sarimveis H, Marchese-Robinson RL, Lobaskin V, Rallo R, Richarz AN, Gajewicz A, Papadopulos MG, Hastings J, Cronin MTD, Benfenati E, Fernandez A (2018) Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food Chem Toxicol 112:478–494

    CAS  PubMed  Google Scholar 

  • Qu ZG, He XC, Lin M, Sha BY, Shi XH, Lu TJ, Xu F (2013) Advances in the understanding of nanomaterial-biomembrane interactions and their mathematical and numerical modeling. Nanomedicine 8(6):995–1011

    CAS  PubMed  Google Scholar 

  • Queiroz AM, Mezacasa AV, Graciano DE, Falco WF, M’Peko JC, Guimarães FEG, Lawson T, Colbeck I, Oliveira SL, Caires ARL (2016) Quenching of chlorophyll fluorescence induced by silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 168:73–77

    CAS  Google Scholar 

  • Raja K, Sowmya R, Sudhagar R, Moorthy PS, Govindaraju K, Subramanian KS (2019) Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater Lett 235:164–167

    CAS  Google Scholar 

  • Rejman J, Oberle V, Zuhorn I, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae mediated endocytosis. Biochem J 377:159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richarz A-N, Madden JC, Marchese-Robinson RL, Lubiński Ł, Mokshina E, Urbaszek P, Kuz’min VE, Puzyn T, Cronin MTD (2015) Development of computational models for the prediction of the toxicity of nanomaterials. Perspect Sci 3(1–4):27–29

    Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nano-particles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285

    CAS  PubMed  Google Scholar 

  • Rizkalla N, Hildgen P (2005) Artificial neural networks: comparison of two programs for modeling a process of nanoparticle preparation. Drug Dev Ind Pharm 31(10):1019–1033

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Malik S, Adress M, Qayyum MF, Alamri SA, Alyemeni MN, Ahmad P (2019) Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plant 41(3):35

    Google Scholar 

  • Rossi L, Bagheri M, Zhang W, Chen Z, Burken JG, Ma X (2019) Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environ Pollut 246:381–389

    CAS  PubMed  Google Scholar 

  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, James SM, Bakr OS, Cingolani R, Stellacci F, Pompa PP (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6(12):7052–7061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saptarshi SR, Duschi A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 11(26):1–12

    Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838

    CAS  PubMed  Google Scholar 

  • Sathiyabama M, Manikandan A (2016) Chitosan nanoparticle induced defense responses in finger millet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. Carbohydr Polym 154:241–246

    CAS  PubMed  Google Scholar 

  • Sathiyabama M, Manikandan A (2018) Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. J Agric Food Chem 66(8):1784–1790

    CAS  PubMed  Google Scholar 

  • Scherer MD, Sposito JCV, Falco WF, Grisolia AB, Andrade LHC, Lima SM, Machado G, Nascimento VA, Gonçalves DA, Wender H, Oliveira SL, Caires ARL (2019) Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ 660:459–467

    CAS  PubMed  Google Scholar 

  • Schnoor B, Elhendawy A, Joseph S, Putman M, Chácon-Cerdas R, Flores-Mora D, Bravo-Moraga F, Gonzalez-Nilo F, Salvador-Morales C (2018) Engineering atrazine loaded poly(lactic-co-glycolic acid) nanoparticles to ameliorate environmental challenges. J Agric Food Chem 66:7889–7898

    CAS  PubMed  Google Scholar 

  • Scognamiglio V, Antonacci A, Arduini F, Moscone D, Campos EV, Fraceto LF, Palleschi G (2019) An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. J Hazard Mater 373:483–492

    CAS  PubMed  Google Scholar 

  • Selvaraj C, Sakkiah S, Tong W, Hong H (2018) Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food Chem Toxicol 112:495–506

    CAS  PubMed  Google Scholar 

  • Shabnam N, Sharmila P, Pardha-Saradhi P (2016) Impact of ionic and nanoparticle speciation states of silver on light harnessing photosynthetic events in Spirodela polyrhiza. Int J Phytoremediation 19:80–86

    Google Scholar 

  • Sharif-Rad J, Sharif-Rad M, Teixeira da Silva JA (2016) Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) exposed to SiO2 nanoparticles. J Agric Sci Technol 18:1027–1040

    Google Scholar 

  • Sharkey TD, Weise SE (2016) The glucose 6-phosphate shunt around the Calvin–Benson cycle. J Exp Bot 67:4067–4077

    CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2013) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188

    PubMed  Google Scholar 

  • Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, Shi Z (2018) Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem 1(100):80–91

    Google Scholar 

  • Shomer I, Novacky AJ, Pike SM, Yermiyahu U, Kinraide TB (2003) Electrical potentials of plant cell walls in response to the ionic environment. Plant Physiol 133:411–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J Biol Sci 21(1):13–17

    CAS  PubMed  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res Int 22:13710–13723

    CAS  PubMed  Google Scholar 

  • Singh S, Hussain I, Singh NB, Singh H (2019) Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicol Environ Saf 182:109410

    CAS  PubMed  Google Scholar 

  • Sinha M, Dhawan A, Parthasarathi R (2019) In Silico approaches in predictive genetic toxicology. Methods Mol Biol 2031:351–373

    CAS  PubMed  Google Scholar 

  • Sizochenko N, Syzochenko M, Fjodorova N, Rasulev B, Leszczynski J (2019) Evaluating genotoxicity of metal oxide nanoparticles: application of advanced supervised and unsupervised machine learning techniques. Ecotoxicol Environ Saf 185:109733

    CAS  PubMed  Google Scholar 

  • Slater R, Stratonovitch P, Elia J, Semenov MA, Denholm I (2017) Use of an individual-based simulation model to explore and evaluate potential insecticide resistance management strategies. Pest Manag Sci 73(7):1364–1372

    CAS  PubMed  Google Scholar 

  • Soenen SJ, Demeester J, De Smedt SC, Braechmans K (2013) Turning a frown upside down: exploiting nanoparticle toxicity for anticancer therapy. Nano Today 8(2):121–125

    CAS  Google Scholar 

  • Soenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality and biomedical applications. Chem Rev 115(5):2109–2135

    CAS  PubMed  Google Scholar 

  • Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85:245–257

    CAS  PubMed  Google Scholar 

  • Sousa GFM, Gomes DG, Campos EVR, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:1–6

    Google Scholar 

  • Spielman-sun E, Avellan A, Bland GD, Tappero RV, Acerbo AS, Unrine JM, Giraldo JP, Lowry GV (2019) Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ Sci Nano 6:2508–2519

    CAS  Google Scholar 

  • Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258

    CAS  Google Scholar 

  • Stenemo F, Lindahl AM, Gardenas A, Jarvis N (2007) Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks. J Contam Hydrol 93(1–4):270–283

    CAS  PubMed  Google Scholar 

  • Sterling P (2014) Homeostasis vs Allostasis implications for brain function and mental disorders. Clin Rev Educ 71(10):1192–1193

    Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9(20):1–15

    Google Scholar 

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nebiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(44):1–21

    CAS  Google Scholar 

  • Suvakov M, Tadic B (2010) Modeling collective charge transport in nanoparticle assemblies. J Phys Condens Matter 22(16):163201

    PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, 672p

    Google Scholar 

  • Tan X, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    CAS  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    CAS  PubMed  Google Scholar 

  • Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C (2018) Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol Biochem 130:408–417

    CAS  PubMed  Google Scholar 

  • Timoshenko J, Wrasman CJ, Luneau M, Shirman T, Cargnello M, Bare SR, Aizenberg J, Friend CM, Frenkel AI (2019) Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett 19(1):520–529

    CAS  PubMed  Google Scholar 

  • Titov AV, Kral P, Pearson R (2010) Sandwiched graphene-membrane superstructures. ACS Nano 4:229–234

    CAS  PubMed  Google Scholar 

  • Tong X, Zhang B, Fan Y, Chen Y (2017) Mechanism exploration of ion transport in nanocomposite cation exchange membranes. ACS Appl Mater Interfaces 9(15):13491–13499

    CAS  PubMed  Google Scholar 

  • Toropova AP, Toropov AA (2018) Use of the index of ideality of correlation to improve models of eco-toxicity. Environ Sci Pollut Res Int 25(31):31771–31775

    PubMed  Google Scholar 

  • Trebst A (1994) Dynamics in photosystem II structure and function. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, 579p

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2004) Air quality criteria for particulate matter (external review draft). National Center for Environmental Assessment, Washington, DC. http://cfpub2.epa.gov/ncea/cfm/partmatt.cfm

    Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8(7):e68752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villaverde JJ, Lopez-Goti C, Alcami M, Lamsabhi AM, Alonso-Prados JL, Sandin-Espana P (2017) Quantum chemistry in environmental pesticide risk assessment. Pest Manag Sci 73(11):2199–2202

    CAS  PubMed  Google Scholar 

  • Villaverde JJ, Sevilla-Moran B, Lopez-Goti C, Alonso-Prados JL, Sandin-Espana P (2018) Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci Total Environ 634:1530–1539

    CAS  PubMed  Google Scholar 

  • Wang S-H, Lee C-W, Chiou A, Wei P-K (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology 8(33):1–13

    Google Scholar 

  • Wang W, Sedykh A, Sun H, Zhao L, Russo DP, Zhou H, Bin Y, Zhu H (2017) Predicting nano-bio interactions by integrating nanoparticle libraries and quantitative nanostructure activity relationship modeling. ACS Nano 11(12):12641–12649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang J, Liu Y, Wang J, Nie Y, Si B, Liu Y, Wang Y, Chen S, Hei TK, Wu L, Zhao G, Xu A (2019) Subcellular targets of zinc oxide nanoparticles during the aging process: role of cross-talk between mitochondrial dysfunction and endoplasmic reticulum stress in the genotoxic response. Toxicol Sci 171(1):159–171

    CAS  Google Scholar 

  • Werner M, Sommer JU, Baulin VA (2012) Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability. Soft Matter 8:11714–11722

    Google Scholar 

  • White JC, Gardea-Torresdey J (2018) Achieving food security through the very small. Nat Nanotechnol 13:621–629

    Google Scholar 

  • Wiese M, Schaper KJ (1993) Application of neural networks in the QSAR analysis of percent effect biological data: comparison with adaptive least squares and nonlinear regression analysis. SAR QSAR Environ Res 1(2–3):137–152

    CAS  PubMed  Google Scholar 

  • Winkler DA, Burden FR, Yan B, Weissleder R, Tassa C, Shaw S, Epa VC (2014) Modelling and predicting the biological effects of nanomaterials. SAR QSAR Environ Res 25(2):161–172

    CAS  PubMed  Google Scholar 

  • Worral EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 285(8):1–24

    Google Scholar 

  • Xia T, Kovochich M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ASC Nano 2(1):85–96

    CAS  Google Scholar 

  • Xiang Y, Zhang G, Chi Y, Cai D, Wu Z (2017) Fabrication of a controllable nanopesticide system with magnetic collectability. Chem Eng J 328:320–330

    CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pieral A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251

    CAS  PubMed  Google Scholar 

  • Xu ZP, Niebert M, Porazik K, Walker TL, Cooper HM, Middelberg APJ, Gray PP, Bartlett PF, Lu GQM (2008) Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release 130(1):86–94

    CAS  PubMed  Google Scholar 

  • Yadav KS, Jacob S, Sachdeva G, Sawant KK (2011) Intracellular delivery of etoposide loaded biodegradable nanoparticles: cytotoxicity and cellular uptake studies. J Nanosci Nanotechnol 11:6657–6667

    CAS  PubMed  Google Scholar 

  • Yan X, Sedykh A, Wang W, Zhao X, Yan B, Zhu H (2019) In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches. Nanoscale 11(17):8352–8362

    CAS  PubMed  Google Scholar 

  • Yanamala N, Kagan VE, Shvedova AA (2013) Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells. Adv Drug Deliv Rev 65(15):2070–2077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583

    CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    CAS  PubMed  Google Scholar 

  • Youssef MS, Elamawi RM (2018) Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environ Sci Pollut Res Int:1–13. https://doi.org/10.1007/s11356-018-3250-1

  • Yu YS, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu ZR, Huang Q, Fan CH, Fang HP, Zhou RH (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601

    Google Scholar 

  • Zahra Z, Ali A, Parveen A, Kim E, Khokhar MF, Baig S, Hina K, Choi H-K, Arshad M (2019) Exposure-response of wheat cultivars to TiO2 nanoparticles in contrasted soils. Soil Sediment Contam 28(2):184–199

    CAS  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17

    Google Scholar 

  • Zeng X, Zhu L, Zheng X, Cecchini M, Huang X (2018) Harnessing complexity in molecular self-assembly using computer simulations. Phys Chem Chem Phys 20(10):6767–6776

    CAS  PubMed  Google Scholar 

  • Zhang H, Lu L, Zhao X, Zhao S, Gu X, Du W, Wei H, Ji R, Zhao L (2019) Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environ Sci Technol 53(10):6007–6017

    CAS  PubMed  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang J-y, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 11(6):9615–9622

    Google Scholar 

  • Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA (2016a) Metabolomics to detect responses of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ Sci Technol 20(17):9697–9707

    Google Scholar 

  • Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA (2016b) 1H NMR and GCMS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nanoCu stress. Environ Sci Technol 50(4):2000–2010

    CAS  PubMed  Google Scholar 

  • Zhao X, Cui H, Wang Y, Sun G, Cui B, Zeng Z (2018a) Development strategies and prospect of nano-based smart pesticide formulation. J Agric Food Chem 66(26):6504–6512

    CAS  PubMed  Google Scholar 

  • Zhao L, Huang Y, Keller AA (2018b) Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem 66(26):6628–6636

    CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92

    CAS  PubMed  Google Scholar 

  • Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12998

    CAS  PubMed  Google Scholar 

  • Zuverza-Mena N, Martinez-Fernandez D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komárek M, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

R.G. would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ)—Brazil (grant numbers: 427498/2018-0 and 454417/2017-9). A.R.L.C. also acknowledges the financial support provided by the CAPES-PrInt funding program (grant numbers: 88887.353061/2019-00 and 88887.311920/2018-00) and the National Institute of Science and Technology of Basic Optics and Optics Applied to Life Science (grant number: 465360/2014-9). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and in part by the Universidade Estadual de Mato Grosso do Sul (UEMS)—PIBAP/UEMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etenaldo F. Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santiago, E.F. et al. (2020). Understanding the Interaction of Nanopesticides with Plants. In: Fraceto, L.F., S.S. de Castro, V.L., Grillo, R., Ávila, D., Caixeta Oliveira, H., Lima, R. (eds) Nanopesticides. Springer, Cham. https://doi.org/10.1007/978-3-030-44873-8_4

Download citation

Publish with us

Policies and ethics