Skip to main content

Appetite Regulation

  • Chapter
  • First Online:
Nutrition in Kidney Disease

Part of the book series: Nutrition and Health ((NH))

  • 873 Accesses

Abstract

Malnutrition and overnutrition are both related to inadequate energy intake, and they are the major public health issues worldwide. Health is influenced by diet composition as well as total energy consumption. All diets contain a mixture of the three macronutrients (protein, carbohydrate, and fat), with varying proportions from one diet or another. Food intake is regulated by complex neurohormonal circuits that can be impaired in metabolic diseases. Peripheral hormones participate in the regulation of energy homeostasis via direct or indirect central signaling pathways. Food preferences are formed by multiple factors, including social, environmental, and genetic determinants. Individual food preferences are prominent determinants of food intakes and subsequently may have implications for the development of long-term chronic diseases such as obesity, diabetes, and chronic kidney diseases (CKD) that are increasingly prevalent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernardis LL, Bellinger LL. The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev. 1993;17(2):141–93.

    Article  CAS  PubMed  Google Scholar 

  2. Brady LS, Smith MA, Gold PW, Herkenham M. Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology. 1990;52(5):441–7.

    Article  CAS  PubMed  Google Scholar 

  3. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380(6571):243–7.

    Article  CAS  PubMed  Google Scholar 

  4. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1(4):271–2.

    Article  CAS  PubMed  Google Scholar 

  5. Morley JE, Levine AS, Gosnell BA, Kneip J, Grace M. Effect of neuropeptide Y on ingestive behaviors in the rat. Am J Physiol. 1987;252(3 Pt 2):R599–609.

    CAS  PubMed  Google Scholar 

  6. Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 1998;139(10):4428–31.

    Article  CAS  PubMed  Google Scholar 

  7. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    Article  CAS  PubMed  Google Scholar 

  8. Britton DR, Koob GF, Rivier J, Vale W. Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sci. 1982;31(4):363–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tsujii S, Bray GA. Acetylation alters the feeding response to MSH and beta-endorphin. Brain Res Bull. 1989;23(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  10. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin CK, Redman LM, Zhang J, Sanchez M, Anderson CM, Smith SR, et al. Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J Clin Endocrinol Metab. 2011;96(3):837–45.

    Article  CAS  PubMed  Google Scholar 

  12. Tuccinardi D, Farr OM, Upadhyay J, Oussaada SM, Mathew H, Paschou SA, et al. Lorcaserin treatment decreases body weight and reduces cardiometabolic risk factors in obese adults: a six-month, randomized, placebo-controlled, double-blind clinical trial. Diabetes Obes Metab. 2019;21(6):1487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bohula EA, Scirica BM, Fanola C, Inzucchi SE, Keech A, McGuire DK, et al. Design and rationale for the Cardiovascular and Metabolic Effects of Lorcaserin in Overweight and Obese Patients-Thrombolysis in Myocardial Infarction 61 (CAMELLIA-TIMI 61) trial. Am Heart J. 2018;202:39–48.

    Article  CAS  PubMed  Google Scholar 

  14. Mul JD, van Boxtel R, Bergen DJM, Brans MAD, Brakkee JH, Toonen PW, et al. Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity. 2012;20(3):612–21.

    Article  CAS  PubMed  Google Scholar 

  15. Panaro BL, Cone RD. Melanocortin-4 receptor mutations paradoxically reduce preference for palatable foods. Proc Natl Acad Sci U S A. 2013;110(17):7050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pallister T, Sharafi M, Lachance G, Pirastu N, Mohney RP, MacGregor A, et al. Food preference patterns in a UK twin cohort. Twin Res Hum Genet. 2015;18(6):793–805.

    Article  PubMed  Google Scholar 

  17. van der Klaauw AA, Keogh JM, Henning E, Stephenson C, Kelway S, Trowse VM, et al. Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat Commun. 2016;7:13055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. van der Klaauw A, Keogh J, Henning E, Stephenson C, Trowse VM, Fletcher P, et al. Role of melanocortin signalling in the preference for dietary macronutrients in human beings. Lancet. 2015;385 Suppl 1:S12.

    Article  PubMed  Google Scholar 

  19. Tanaka T, Ngwa JS, van Rooij FJA, Zillikens MC, Wojczynski MK, Frazier-Wood AC, et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr. 2013;97(6):1395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet. 2013;22(9):1895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi Q, Kilpeläinen TO, Downer MK, Tanaka T, Smith CE, Sluijs I, et al. FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum Mol Genet. 2014;23(25):6961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CNA. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558–66.

    Article  CAS  PubMed  Google Scholar 

  23. Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav. 2004;81(2):249–73.

    Article  CAS  PubMed  Google Scholar 

  24. Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007;117(1):13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.

    Article  CAS  PubMed  Google Scholar 

  26. Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci U S A. 2008;105(17):6320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A. 2004;101(13):4679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abizaid A, Liu Z-W, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116(12):3229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.

    Article  CAS  PubMed  Google Scholar 

  30. Steculorum SM, Collden G, Coupe B, Croizier S, Lockie S, Andrews ZB, et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J Clin Invest. 2015;125(2):846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  32. Kissileff HR, Carretta JC, Geliebter A, Pi-Sunyer FX. Cholecystokinin and stomach distension combine to reduce food intake in humans. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R992–8.

    Article  CAS  PubMed  Google Scholar 

  33. Crawley JN, Beinfeld MC. Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature. 1983;302(5910):703–6.

    Article  CAS  PubMed  Google Scholar 

  34. D’Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife. 2016;14:5.

    Google Scholar 

  35. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153–65.

    Article  CAS  PubMed  Google Scholar 

  36. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sisley S, Gutierrez-Aguilar R, Scott M, D’Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest. 2014;124(6):2456–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bagger JI, Holst JJ, Hartmann B, Andersen B, Knop FK, Vilsbøll T. Effect of Oxyntomodulin, glucagon, GLP-1, and combined glucagon +GLP-1 infusion on food intake, appetite, and resting energy expenditure. J Clin Endocrinol Metab. 2015;100(12):4541–52.

    Article  CAS  PubMed  Google Scholar 

  39. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.

    Article  CAS  PubMed  Google Scholar 

  40. Mietlicki-Baase EG, Olivos DR, Jeffrey BA, Hayes MR. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab. 2015;308(12):E1116–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol. 2019;241(1):R1–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steinert RE, Luscombe-Marsh ND, Little TJ, Standfield S, Otto B, Horowitz M, et al. Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J Clin Endocrinol Metab. 2014;99(9):3275–84.

    Article  CAS  PubMed  Google Scholar 

  43. McVeay C, Fitzgerald PCE, Ullrich SS, Steinert RE, Horowitz M, Feinle-Bisset C. Effects of intraduodenal administration of lauric acid and L-tryptophan, alone and combined, on gut hormones, pyloric pressures, and energy intake in healthy men. Am J Clin Nutr. 2019;109(5):1335–43.

    Article  PubMed  Google Scholar 

  44. Hankir MK, Seyfried F, Hintschich CA, Diep T-A, Kleberg K, Kranz M, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab. 2017;25(2):335–44.

    Article  CAS  PubMed  Google Scholar 

  45. DiPatrizio NV, Piomelli D. Intestinal lipid–derived signals that sense dietary fat. J Clin Invest. 2015;125(3):891–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Talukdar S, Owen BM, Song P, Hernandez G, Zhang Y, Zhou Y, et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 2016;23(2):344–9.

    Article  CAS  PubMed  Google Scholar 

  47. von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC, Claflin KE, et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 2016;23(2):335–43.

    Article  CAS  Google Scholar 

  48. Søberg S, Sandholt CH, Jespersen NZ, Toft U, Madsen AL, von Holstein-Rathlou S, et al. FGF21 Is a sugar-induced hormone associated with sweet intake and preference in humans. Cell Metab. 2017;25(5):1045–1053.e6.

    Article  PubMed  CAS  Google Scholar 

  49. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vong L, Ye C, Yang Z, Choi B, Chua S, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron. 2011;71(1):142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garfield AS, Patterson C, Skora S, Gribble FM, Reimann F, Evans ML, et al. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinology. 2012;153(10):4600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanoski SE, Ong ZY, Fortin SM, Schlessinger ES, Grill HJ. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms. Diabetes Obes Metab. 2015;17(3):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matson CA, Reid DF, Ritter RC. Daily CCK injection enhances reduction of body weight by chronic intracerebroventricular leptin infusion. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1368–73.

    Article  CAS  PubMed  Google Scholar 

  54. Dardeno TA, Chou SH, Moon H-S, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol. 2010;31(3):377–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stengel A, Taché Y. Minireview: nesfatin-1—an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology. 2011;152(11):4033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Plata-Salamán CR. Cytokines and feeding. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S48–52.

    Article  PubMed  Google Scholar 

  57. Olszewski PK, Levine AS. Basic research on appetite regulation: social context of a meal is missing. Pharmacol Biochem Behav. 2016;148:106–7.

    Article  CAS  PubMed  Google Scholar 

  58. Hylander B, Barkeling B, Rössner S. Changes in patients’ eating behavior: in the uremic state, on continuous ambulatory peritoneal dialysis treatment, and after transplantation. Am J Kidney Dis. 1997;29(5):691–8.

    Article  CAS  PubMed  Google Scholar 

  59. McMahon EJ, Campbell KL, Bauer JD. Taste perception in kidney disease and relationship to dietary sodium intake. Appetite. 2014;83:236–41.

    Article  PubMed  Google Scholar 

  60. Aguilera A, Codoceo R, Bajo MA, Iglesias P, Diéz JJ, Barril G, et al. Eating behavior disorders in uremia: a question of balance in appetite regulation. Semin Dial. 2004;17(1):44–52.

    Article  PubMed  Google Scholar 

  61. Dobell E, Chan M, Williams P, Allman M. Food preferences and food habits of patients with chronic renal failure undergoing dialysis. J Am Diet Assoc. 1993;93(10):1129–35.

    Article  CAS  PubMed  Google Scholar 

  62. Wright MJ, Woodrow G, O’Brien S, King NA, Dye L, Blundell JE, et al. A novel technique to demonstrate disturbed appetite profiles in haemodialysis patients. Nephrol Dial Transplant. 2001;16(7):1424–9.

    Article  CAS  PubMed  Google Scholar 

  63. Landis BN, Marangon N, Saudan P, Hugentobler M, Giger R, Martin P-Y, et al. Olfactory function improves following hemodialysis. Kidney Int. 2011;80(8):886–93.

    Article  CAS  PubMed  Google Scholar 

  64. Griep MI, Van der Niepen P, Sennesael JJ, Mets TF, Massart DL, Verbeelen DL. Odour perception in chronic renal disease. Nephrol Dial Transplant. 1997;12(10):2093–8.

    Article  CAS  PubMed  Google Scholar 

  65. Bomback AS, Raff AC. Olfactory function in dialysis patients: a potential key to understanding the uremic state. Kidney Int. 2011;80(8):803–5.

    Article  PubMed  Google Scholar 

  66. Nigwekar SU, Weiser JM, Kalim S, Xu D, Wibecan JL, Dougherty SM, et al. Characterization and correction of olfactory deficits in kidney disease. J Am Soc Nephrol. 2017;28(11):3395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raff AC, Lieu S, Melamed ML, Quan Z, Ponda M, Meyer TW, et al. Relationship of impaired olfactory function in ESRD to malnutrition and retained uremic molecules. Am J Kidney Dis. 2008;52(1):102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest. 2005;115(6):1659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheung WW, Kuo H-J, Markison S, Chen C, Foster AC, Marks DL, et al. Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice. J Am Soc Nephrol. 2007;18(9):2517–24.

    Article  CAS  PubMed  Google Scholar 

  70. Aguilera A, Codoceo R, Selgas R, Garcia P, Picornell M, Diaz C, et al. Anorexigen (TNF-alpha, cholecystokinin) and orexigen (neuropeptide Y) plasma levels in peritoneal dialysis (PD) patients: their relationship with nutritional parameters. Nephrol Dial Transplant. 1998;13(6):1476–83.

    Article  CAS  PubMed  Google Scholar 

  71. Anderstam B, Mamoun AH, Södersten P, Bergström J. Middle-sized molecule fractions isolated from uremic ultrafiltrate and normal urine inhibit ingestive behavior in the rat. J Am Soc Nephrol. 1996;7(11):2453–60.

    Article  CAS  PubMed  Google Scholar 

  72. Cumin F, Baum HP, Levens N. Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord. 1996;20(12):1120–6.

    CAS  PubMed  Google Scholar 

  73. Sharma K, Considine RV, Michael B, Dunn SR, Weisberg LS, Kurnik BR, et al. Plasma leptin is partly cleared by the kidney and is elevated in hemodialysis patients. Kidney Int. 1997;51(6):1980–5.

    Article  CAS  PubMed  Google Scholar 

  74. Meyer C, Robson D, Rackovsky N, Nadkarni V, Gerich J. Role of the kidney in human leptin metabolism. Am J Physiol. 1997;273(5):E903–7.

    CAS  PubMed  Google Scholar 

  75. Aminzadeh MA, Pahl MV, Barton CH, Doctor NS, Vaziri ND. Human uraemic plasma stimulates release of leptin and uptake of tumour necrosis factor-alpha in visceral adipocytes. Nephrol Dial Transplant. 2009;24(12):3626–31.

    Article  CAS  PubMed  Google Scholar 

  76. Kalbacher E, Koppe L, Zarrouki B, Pillon NJ, Fouque D, Soulage CO. Human uremic plasma and not urea induces exuberant secretion of leptin in 3T3-L1 adipocytes. J Ren Nutr. 2011;21(1):72–5.

    Article  CAS  PubMed  Google Scholar 

  77. Stenvinkel P, Heimbürger O, Lönnqvist F. Serum leptin concentrations correlate to plasma insulin concentrations independent of body fat content in chronic renal failure. Nephrol Dial Transplant. 1997;12(7):1321–5.

    Article  CAS  PubMed  Google Scholar 

  78. Heimbürger O, Lönnqvist F, Danielsson A, Nordenström J, Stenvinkel P. Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J Am Soc Nephrol. 1997;8(9):1423–30.

    Article  PubMed  Google Scholar 

  79. Pecoits-Filho R, Nordfors L, Heimbürger O, Lindholm B, Anderstam B, Marchlewska A, et al. Soluble leptin receptors and serum leptin in end-stage renal disease: relationship with inflammation and body composition. Eur J Clin Invest. 2002;32(11):811–7.

    Article  CAS  PubMed  Google Scholar 

  80. Mak RH, Cheung W, Cone RD, Marks DL. Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int. 2006;69(5):794–7.

    Article  CAS  PubMed  Google Scholar 

  81. Daschner M, Tönshoff B, Blum WF, Englaro P, Wingen AM, Schaefer F, et al. Inappropriate elevation of serum leptin levels in children with chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Am Soc Nephrol. 1998;9(6):1074–9.

    Article  CAS  PubMed  Google Scholar 

  82. Odamaki M, Furuya R, Yoneyama T, Nishikino M, Hibi I, Miyaji K, et al. Association of the serum leptin concentration with weight loss in chronic hemodialysis patients. Am J Kidney Dis. 1999;33(2):361–8.

    Article  CAS  PubMed  Google Scholar 

  83. Castaneda-Sceppa C, Sarnak MJ, Wang X, Greene T, Madero M, Kusek JW, et al. Role of adipose tissue in determining muscle mass in patients with chronic kidney disease. J Ren Nutr. 2007;17(5):314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rodriguez Ayala E, Pecoits-Filho R, Heimbürger O, Lindholm B, Nordfors L, Stenvinkel P. Associations between plasma ghrelin levels and body composition in end-stage renal disease: a longitudinal study. Nephrol Dial Transplant. 2004;19(2):421–6.

    Article  CAS  PubMed  Google Scholar 

  85. Chudek J, Adamczak M, Kania M, Hołowiecka A, Rozmus W, Kokot F, et al. Does plasma leptin concentration predict the nutritional status of hemodialyzed patients with chronic renal failure? Med Sci Monit. 2003;9(8):CR377–82.

    PubMed  Google Scholar 

  86. Bossola M, Scribano D, Colacicco L, Tavazzi B, Giungi S, Zuppi C, et al. Anorexia and plasma levels of free tryptophan, branched chain amino acids, and ghrelin in hemodialysis patients. J Ren Nutr. 2009;19(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  87. Gupta RK, Kuppusamy T, Patrie JT, Gaylinn B, Liu J, Thorner MO, et al. Association of plasma des-acyl ghrelin levels with CKD. Clin J Am Soc Nephrol. 2013;8(7):1098–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mafra D, Guebre-Egziabher F, Cleaud C, Arkouche W, Mialon A, Drai J, et al. Obestatin and ghrelin interplay in hemodialysis patients. Nutrition. 2010;26(11–12):1100–4.

    Article  CAS  PubMed  Google Scholar 

  89. Deboer MD, Zhu X, Levasseur PR, Inui A, Hu Z, Han G, et al. Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile. Endocrinology. 2008;149(2):827–35.

    Article  CAS  PubMed  Google Scholar 

  90. Ashby DR, Ford HE, Wynne KJ, Wren AM, Murphy KG, Busbridge M, et al. Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int. 2009;76(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  91. Wynne K, Giannitsopoulou K, Small CJ, Patterson M, Frost G, Ghatei MA, et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J Am Soc Nephrol. 2005;16(7):2111–8.

    Article  CAS  PubMed  Google Scholar 

  92. Carrero JJ, Witasp A, Stenvinkel P, Qureshi AR, Heimbürger O, Bárány P, et al. Visfatin is increased in chronic kidney disease patients with poor appetite and correlates negatively with fasting serum amino acids and triglyceride levels. Nephrol Dial Transplant. 2010;25(3):901–6.

    Article  CAS  PubMed  Google Scholar 

  93. Lebherz C, Schlieper G, Möllmann J, Kahles F, Schwarz M, Brünsing J, et al. GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease. Am J Med. 2017;130(7):833–841.e3.

    Article  CAS  PubMed  Google Scholar 

  94. Hirako M, Kamiya T, Misu N, Kobayashi Y, Adachi H, Shikano M, et al. Impaired gastric motility and its relationship to gastrointestinal symptoms in patients with chronic renal failure. J Gastroenterol. 2005;40(12):1116–22.

    Article  PubMed  Google Scholar 

  95. Wu G-J, Cai X-D, Xing J, Zhong G-H, Chen JDZ. Circulating motilin, ghrelin, and GLP-1 and their correlations with gastric slow waves in patients with chronic kidney disease. Am J Physiol Regul Integr Comp Physiol. 2017;313(2):R149–57.

    Article  PubMed  Google Scholar 

  96. Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6(8):605–17.

    Article  CAS  PubMed  Google Scholar 

  97. Wright M, Woodrow G, O’Brien S, Armstrong E, King N, Dye L, et al. Cholecystokinin and leptin: their influence upon the eating behaviour and nutrient intake of dialysis patients. Nephrol Dial Transplant. 2004;19(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  98. Stein S, Bachmann A, Lössner U, Kratzsch J, Blüher M, Stumvoll M, et al. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care. 2009;32(1):126–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. de PGA S, de Paula RB, Sanders-Pinheiro H, Moe OW, Hu M-C. Fibroblast growth factor 21 in chronic kidney disease. J Nephrol. 2019;32(3):365–77.

    Article  CAS  Google Scholar 

  100. Kalantar-Zadeh K, Abbott KC, Salahudeen AK, Kilpatrick RD, Horwich TB. Survival advantages of obesity in dialysis patients. Am J Clin Nutr. 2005;81(3):543–54.

    Article  CAS  PubMed  Google Scholar 

  101. Carr SJ, Layward E, Bevington A, Hattersley J, Walls J. Plasma amino acid profile in the elderly with increasing uraemia. Nephron. 1994;66(2):228–30.

    Article  CAS  PubMed  Google Scholar 

  102. Hiroshige K, Sonta T, Suda T, Kanegae K, Ohtani A. Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol Dial Transplant. 2001;16(9):1856–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fitsum Guebre-Egziabher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guebre-Egziabher, F. (2020). Appetite Regulation. In: Burrowes, J., Kovesdy, C., Byham-Gray, L. (eds) Nutrition in Kidney Disease. Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-030-44858-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44858-5_28

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-44857-8

  • Online ISBN: 978-3-030-44858-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics