Skip to main content

Receptors for Phagocytosis and Trogocytosis in Entamoeba histolytica

  • Conference paper
  • First Online:
Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology

Abstract

In the protozoan parasite Entamoeba histolytica, phagocytosis is considered to be indispensable for its parasitic lifestyle, and centrally involved in the pathogenesis. Currently, two modes of target internalization that can be differentiated at phenomenal and molecular levels have been demonstrated in E. histolytica: phagocytosis and trogocytosis. In phagocytosis, E. histolytica ingests a dead mammalian cell or an undeformable microorganism such as bacteria and fungi, as a whole. In contrast, in trogocytosis, live cells are nibbled (chewed) and ingested as fragments. It has been reported in E. histolytica that trogocytosis, not phagocytosis, is involved in immune evasion from complement attack via presenting cell surface membrane proteins acquired from host cells onto the amebic surface. Mechanistic differences at molecular levels between phagocytosis and trogocytosis have been only partially demonstrated. Only proteins known to differentiate these processes are a set of kinases, AGCK1 and AGCK2. However, what triggers phagocytosis versus trogocytosis remains largely unknown. In model organisms, it is well established that receptor for the prey is the key that regulates phagocytic internalization and the following signaling events defined by the prey. To get insights into receptor candidates for phagocytosis and trogocytosis, here we summarize previously identified potential receptors and surface molecules involved in adhesion and phagocytosis/trogocytosis in E. histolytica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGCK:

AGC family kinase

Arial:

Asparagine-rich E. histolytica antigen

CRT:

Calreticulin

Gal:

Galactose

GalNAc:

N-acetyl-d-galactosamine

LRP1:

LDL receptor-related protein 1

SREHP:

Serine rich E. histolytica protein

TMK:

Transmembrane kinase

References

  • Abhyankar, M. M., Shrimal, S., Gilchrist, C. A., Bhattacharya, A., & Petri, W. A., Jr. (2012). The Entamoeba histolytica serum-inducible transmembrane kinase EhTMKB1-9 is involved in intestinal amebiasis. International Journal for Parasitology: Drugs and Drug Resistance, 2, 243–248.

    PubMed  Google Scholar 

  • Adler, P., Wood, S. J., Lee, Y. C., Lee, R. T., Petri, W. A., Jr., & Schnaar, R. L. (1995). High affinity binding of the Entamoeba histolytica lectin to polyvalent N-acetylgalactosaminides. Journal of Biological Chemistry, 270, 5164–5171.

    Article  CAS  Google Scholar 

  • Arandjelovic, S., & Ravichandran, K. S. (2015). Phagocytosis of apoptotic cells in homeostasis. Nature Immunology, 16, 907–917.

    Article  CAS  Google Scholar 

  • Baxt, L. A., Baker, R. P., Singh, U., & Urban, S. (2008). An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion. Genes & Development, 22, 1636–1646.

    Article  CAS  Google Scholar 

  • Beck, D. L., Boettner, D. R., Dragulev, B., Ready, K., Nozaki, T., & Petri, W. A., Jr. (2005). Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryotic Cell, 4, 722–732.

    Article  CAS  Google Scholar 

  • Betancur, P. A., Abraham, B. J., Yiu, Y. Y., Willingham, S. B., Khameneh, F., Zarnegar, M., et al. (2017). A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nature Communications, 8, 14802.

    Article  CAS  Google Scholar 

  • Biller, L., Matthiesen, J., Kühne, V., Lotter, H., Handal, G., Nozaki, T., Saito-Nakano, Y., et al. (2014). The cell surface proteome of Entamoeba histolytica. Molecular & Cellular Proteomics, 13, 132–144.

    Google Scholar 

  • Boettner, D. R., Huston, C. D., Linford, A. S., Buss, S. N., Houpt, E., Sherman, N. E., & Petri, W. A. Jr. (2008). Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family. PLoS Pathogens, e8.

    Google Scholar 

  • Boettner, D. R., Huston, C. D., Sullivan, J. A., & Petri, W. A., Jr. (2005). Entamoeba histolytica and Entamoeba dispar utilize externalized phosphatidylserine for recognition and phagocytosis of erythrocytes. Infection and Immunity, 73, 3422–3430.

    Article  CAS  Google Scholar 

  • Buss, S. N., Hamano, S., Vidrich, A., Evans, C., Zhang, Y., Crasta, O. R., et al. (2010). Members of the Entamoeba histolytica transmembrane kinase family play non-redundant roles in growth and phagocytosis. International Journal for Parasitology, 40, 833–843.

    Article  CAS  Google Scholar 

  • Cheng, X. J., Tsukamoto, H., Kaneda, Y., & Tachibana, H. (1998). Identification of the 150-kDa surface antigen of Entamoeba histolytica as a galactose- and N-acetyl-d-galactosamine-inhibitable lectin. Parasitology Research, 84, 632–639.

    Article  CAS  Google Scholar 

  • Dodson, J. M., Lenkowski, P. W., Jr., Eubanks, A. C., Jackson, T. F., Napodano, J., Lyerly, D. M., et al. (1999). Infection and immunity mediated by the carbohydrate recognition domain of the Entamoeba histolytica Gal/GalNAc lectin. Journal of Infectious Diseases, 179, 460–466.

    Article  CAS  Google Scholar 

  • Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y., & Henson, P. M. (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation, 101, 890–898.

    Article  CAS  Google Scholar 

  • Gardai, S. J., McPhillips, K. A., Frasch, S. C., Janssen, W. J., Starefeldt, A., Murphy-Ullrich, J. E., Bratton, D. L., et al. (2005). Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 123, 321–334.

    Google Scholar 

  • Heron, B. T., Sateriale, A., Teixeira, J. E., & Huston, C. D. (2011). Evidence for a novel Entamoeba histolytica lectin activity that recognises carbohydrates present on ovalbumin. International Journal for Parasitology, 41, 137–144.

    Article  CAS  Google Scholar 

  • Huston, C. D., Boettner, D. R., Miller-Sims, V., & Petri, W. A., Jr. (2003). Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica. Infection and Immunity, 71, 964–972.

    Article  CAS  Google Scholar 

  • Katz, U., Ankri, S., Stolarsky, T., Nuchamowitz, Y., & Mirelman, D. (2002). Entamoeba histolytica expressing a dominant negative N-truncated light subunit of its gal-lectin are less virulent. Molecular Biology of the Cell, 13, 4256–4265.

    Article  CAS  Google Scholar 

  • Mai, Z., & Samuelson, J. (1998). A new gene family (ariel) encodes asparagine-rich Entamoeba histolytica antigens, which resemble the amebic vaccine candidate serine-rich E. histolytica protein. Infection and Immunity, 66, 353–355.

    Article  CAS  Google Scholar 

  • Marion, S., & Guillén, N. (2006). Genomic and proteomic approaches highlight phagocytosis of living and apoptotic human cells by the parasite Entamoeba histolytica. International Journal for Parasitology, 36, 131–139.

    Article  CAS  Google Scholar 

  • Mehra, A., Fredrick, J., Petri, W. A., Jr., Bhattacharya, S., & Bhattacharya, A. (2006). Expression and function of a family of transmembrane kinases from the protozoan parasite Entamoeba histolytica. Infection and Immunity, 74, 5341–5351.

    Article  CAS  Google Scholar 

  • Miller, H. W., Suleiman, R. L., & Ralston, K. S. (2019). Trogocytosis by Entamoeba histolytica mediates acquisition and display of human cell membrane proteins and evasion of lysis by human serum. mBio, 10(2). pii: e00068-19.

    Google Scholar 

  • Naula, C., Parsons, M., & Mottram, J. C. (2005). Protein kinases as drug targets in trypanosomes and Leishmania. Biochimica et Biophysica Acta, 1754, 151–159.

    Article  CAS  Google Scholar 

  • Okada, M., Huston, C. D., Oue, M., Mann, B. J., Petri, W. A., Jr., Kita, K., et al. (2006). Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Molecular and Biochemical Parasitology, 145, 171–183.

    Article  CAS  Google Scholar 

  • Orozco, E., Guarneros, G., Martinez-Palomo, A., & Sánchez, T. (1983). Entamoeba histolytica. Phagocytosis as a virulence factor. Journal of Experimental Medicine, 158, 1511–1521.

    Article  CAS  Google Scholar 

  • Petri, W. A., Jr., Chapman, M. D., Snodgrass, T., Mann, B. J., Broman, J., & Ravdin, J. I. (1989). Subunit structure of the galactose and N-acetyl-D-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. Journal of Biological Chemistry, 264, 3007–3012.

    CAS  PubMed  Google Scholar 

  • Petri, W. A., Jr., Haque, R., & Mann, B. J. (2002). The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annual Review of Microbiology, 56, 39–64.

    Article  CAS  Google Scholar 

  • Petri, W. A., Jr., Smith, R. D., Schlesinger, P. H., Murphy, C. F., & Ravdin, J. I. (1987). Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica. Journal of Clinical Investigation, 80, 1238–1244.

    Article  CAS  Google Scholar 

  • Petri, W. A., Jr., Snodgrass, T. L., Jackson, T. F., Gathiram, V., Simjee, A. E., Chadee, K., et al. (1990). Monoclonal antibodies directed against the galactose-binding lectin of Entamoeba histolytica enhance adherence. Journal of Immunology, 144, 4803–4809.

    CAS  Google Scholar 

  • Pincetic, A., Bournazos, S., DiLillo, D. J., Maamary, J., Wang, T. T., Dahan, R., et al. (2014). Type I and type II Fc receptors regulate innate and adaptive immunity. Nature Immunology, 15, 707–716.

    Article  CAS  Google Scholar 

  • Ralston, K. S. (2015). Taking a bite: Amoebic trogocytosis in Entamoeba histolytica and beyond. Current Opinion in Microbiology, 28, 26–35.

    Article  Google Scholar 

  • Ralston, K. S., Solga, M. D., Mackey-Lawrence, N. M., Somlata, Bhattacharya A., & Petri, W. A., Jr. (2014). Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature, 508, 526–530.

    Article  CAS  Google Scholar 

  • Ravdin, J. I., & Guerrant, R. L. (1981). Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. Journal of Clinical Investigation, 68, 1305–1313.

    Article  CAS  Google Scholar 

  • Ravdin, J. I., Stanley, P., Murphy, C. F., & Petri, W. A., Jr. (1989). Characterization of cell surface carbohydrate receptors for Entamoeba histolytica adherence lectin. Infection and Immunity, 57, 2179–2186.

    Article  CAS  Google Scholar 

  • Sateriale, A., & Huston, C. D. (2011). A sequential model of host cell killing and phagocytosis by Entamoeba histolytica. Journal of Parasitology Research. https://doi.org/10.1155/2011/926706. Epub 2011 Jan 20. PubMed PMID: 21331284; PubMed Central PMCID: PMC3038552.

  • Sateriale, A., Miller, P., Huston, C. D. (2016, March 24). Knockdown of five genes encoding uncharacterized proteins inhibits entamoeba histolytica phagocytosis of dead host cells.Infection and Immunity, 84(4), 1045–1053. https://doi.org/10.1128/IAI.01325-15. Print 2016 Apr. PubMed PMID: 26810036; PubMed Central PMCID: PMC4807468.

  • Sateriale, A., Vaithilingam, A., Donnelly, L., Miller, P., & Huston, C. D. (2012). Feed-forward regulation of phagocytosis by Entamoeba histolytica. Infection and Immunity, 2012(80), 4456–4462.

    Google Scholar 

  • Shrimal, S., Bhattacharya, S., & Bhattacharya, A. (2010). Serum-dependent selective expression of EhTMKB1-9, a member of Entamoeba histolytica B1 family of transmembrane kinases. PLoS Pathogens, 6(6), e1000929.

    Article  Google Scholar 

  • Somlata, Nakada-Tsukui K., & Nozaki, T. (2017). AGC family kinase 1 participates in trogocytosis but not in phagocytosis in Entamoeba histolytica. Nature Communications, 8(1), 101.

    Article  CAS  Google Scholar 

  • Stanley, S. L. Jr., Becker, A., Kunz-Jenkins, C., Foster, L., & Li, E. (1990, July). Cloning and expression of a membrane antigen of Entamoeba histolytica possessing multiple tandem repeats. Proceedings of the National Academy of Sciences of the United States of America, 87(13), 4976–4980. PubMed PMID: 1695007; PubMed Central PMCID: PMC54244.

    Google Scholar 

  • Stanley, S. L. Jr., Tian, K., Koester, J. P., & Li, E. (1995, February 24). The serine-rich Entamoeba histolytica protein is a phosphorylated membrane protein containing O-linked terminal Nacetylglucosamine residues. Journal of Biological Chemistry, 270(8), 4121–4126. PubMed PMID: 7876162.

    Google Scholar 

  • Tannich, E., Ebert, F., & Horstmann, R. D. (1991). Primary structure of the 170-kDa surface lectin of pathogenic Entamoeba histolytica. Proceedings of the National Academy of Sciences of the United States of America, 88, 1849–1853.

    Article  CAS  Google Scholar 

  • Tavares, P., Rigothier, M. C., Khun, H., Roux, P., Huerre, M., & Guillén, N. (2005). Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance. Infection and Immunity, 73, 1771–1778.

    Article  CAS  Google Scholar 

  • Teixeira, J. E., Heron, B. T., & Huston, C. D. (2008). C1q- and collectin-dependent phagocytosis of apoptotic host cells by the intestinal protozoan Entamoeba histolytica. Journal of Infectious Diseases, 198, 1062–1070.

    Article  CAS  Google Scholar 

  • Teixeira, J. E., & Huston, C. D. (2008). Participation of the serine-rich Entamoeba histolytica protein in amebic phagocytosis of apoptotic host cells. Infection and Immunity, 76, 959–966.

    Article  CAS  Google Scholar 

  • Vaithilingam, A., Teixeira, J. E., Miller, P. J., Heron, B. T., & Huston, C. D. (2012). Entamoeba histolytica cell surface calreticulin binds human c1q and functions in amebic phagocytosis of host cells. Infection and Immunity, 80, 2008–2018.

    Article  CAS  Google Scholar 

  • Vines, R. R., Ramakrishnan, G., Rogers, J. B., Lockhart, L. A., Mann, B. J., & Petri, W. A., Jr. (1998). Regulation of adherence and virulence by the Entamoeba histolytica lectin cytoplasmic domain, which contains a beta2 integrin motif. Molecular Biology of the Cell, 9, 2069–2079.

    Article  CAS  Google Scholar 

  • Zargarian, S., Shlomovitz, I., Erlich, Z., Hourizadeh, A., Ofir-Birin, Y., Croker, B. A., et al. (2017). Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLoS Biology, 15(6), e2002711.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kumiko Nakada-Tsukui or Tomoyoshi Nozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakada-Tsukui, K., Nozaki, T. (2020). Receptors for Phagocytosis and Trogocytosis in Entamoeba histolytica. In: Guillen, N. (eds) Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-44826-4_17

Download citation

Publish with us

Policies and ethics