Skip to main content

Evolving Roles of Long Noncoding RNAs

  • Chapter
  • First Online:
The Chemical Biology of Long Noncoding RNAs

Part of the book series: RNA Technologies ((RNATECHN,volume 11))

Abstract

The advancement of genomic research has allowed the large-scale discovery of long noncoding RNAs (lncRNAs). lncRNAs are defined as large and diverse class RNA transcripts longer than 200 bp with no protein-coding capacity. lncRNAs can be categorized based on their cellular location, structures, and mechanisms of function. lncRNAs are involved in many important biological processes such as gene transcription, epigenetic regulation and development. Although lncRNAs are not as well-conserved as protein-coding genes in sequence, it was reported that their structures are more conserved and are important for their functions. lncRNAs are highly cell type-specific and their expressions are dysregulated during disease pathogenesis. Characterization of lncRNAs may provide better solutions for diagnosis, prognosis, and targeted therapies. In this book chapter, we summarize the classification, localization, and structural studies of lncRNA. We will also review various mechanisms and physiological functions of lncRNAs, and biomarker potential of lncRNAs in neurological disorders. Finally, we will discuss the recent advancements in antisense oligonucleotide (ASO) chemistry for targeted delivery and other methods in targeting lncRNAs for potential disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airavaara M, Pletnikova O, Doyle ME et al (2011) Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 286:45093–45102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arisi I, D’Onofrio M, Brandi R et al (2011) Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimers Dis 24:721–738

    CAS  PubMed  Google Scholar 

  • Barry G, Briggs JA, Vanichkina DP et al (2014) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19:486–494

    CAS  PubMed  Google Scholar 

  • Beltran M, Puig I, Peña C et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev 22:756–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blythe AJ, Fox AH, Bond CS (2016) The ins and outs of lncRNA structure: how, why and what comes next? Biochim Biophys Acta 1859:46–58

    CAS  PubMed  Google Scholar 

  • Cabili MN, Dunagin MC, McClanahan PD et al (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20

    PubMed  PubMed Central  Google Scholar 

  • Carlevaro-Fita J, Johnson R (2019) Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73:869–883

    CAS  PubMed  Google Scholar 

  • Carrieri C, Forrest AR, Santoro C et al (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9:114

    PubMed  PubMed Central  Google Scholar 

  • Chaytow H, Huang YT, Gillingwater TH et al (2018) The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 75:3877–3894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Spengler RM, Keiser MS et al (2018) The long non-coding RNA NEAT1 is elevated in polyglutamine repeat expansion diseases and protects from disease gene-dependent toxicities. Hum Mol Genet 27:4303–4314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4:35–50

    PubMed  PubMed Central  Google Scholar 

  • Chung DW, Rudnicki DD, Yu L et al (2011) A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum Mol Genet 20:3467–3477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciarlo E, Massone S, Penna I et al (2013) An intronic ncRNA-dependent regulation of SORL1 expression affecting Abeta formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis Model Mech 6:424–433

    CAS  PubMed  Google Scholar 

  • Clark BS, Blackshaw S (2017) Understanding the role of lncRNAs in nervous system development. Adv Exp Med Biol 1008:253–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero P, Kladwang W, VanLang CC et al (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51:7037–7039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas-Diaz Duran R, Wei H, Kim DH et al (2019) Long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol 45:538–556

    CAS  PubMed  Google Scholar 

  • d’Ydewalle C, Ramos DM, Pyles NJ et al (2017) The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy. Neuron 93:66–79

    PubMed  Google Scholar 

  • Decourt B, Sabbagh MN (2011) BACE1 as a potential biomarker for Alzheimer’s disease. J Alzheimers Dis 24(Suppl 2):53–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1:347–355

    CAS  PubMed  Google Scholar 

  • Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Muppani NR, Wu J (2016) Long noncoding RNAs: critical regulators for cell lineage commitment in the central nervous system. In: Transcriptomics and gene regulation. Springer, Dordrecht, pp 73–97

    Google Scholar 

  • Egholm M, Buchardt O, Christensen L et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    CAS  PubMed  Google Scholar 

  • Elkouris M, Kouroupi G, Vourvoukelis A et al (2019) Long non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci 13:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51:1650–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada-Sanchez AM, Rebec GV (2013) Role of cerebral cortex in the neuropathology of Huntington’s disease. Front Neural Circuits 7:19

    PubMed  PubMed Central  Google Scholar 

  • Faghihi MA, Zhang M, Huang J et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56

    PubMed  PubMed Central  Google Scholar 

  • Fang R, Moss WN, Rutenberg-Schoenberg M et al (2015) Probing Xist RNA structure in cells using targeted structure-seq. PLoS Genet 11:e1005668

    PubMed  PubMed Central  Google Scholar 

  • Feng L, Liao YT, He JC et al (2018) Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer disease. BMC Neurol 18:4

    PubMed  PubMed Central  Google Scholar 

  • Flynn RA, Zhang QC, Spitale RC et al (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat Protoc 11:273–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francelle L, Galvan L, Gaillard MC et al (2015) Striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiol Aging 36(1601):e1607–e1616

    Google Scholar 

  • Gandhi M, Caudron-Herger M, Diederichs S (2018) RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs. Nat Struct Mol Biol 25:1070–1076

    CAS  PubMed  Google Scholar 

  • Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal A, Myacheva K, Gross M et al (2017) Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res 45:e12

    PubMed  Google Scholar 

  • Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CC, Jiao CH, Gao ZM (2018) Silencing of lncRNA BDNF-AS attenuates Abeta25-35-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress. Neurol Res 40:795–804

    CAS  PubMed  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henz SR, Cumbie JS, Kasschau KD et al (2007) Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol 144:1247–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herold CJ, Lasser MM, Seidl UW et al (2018) Neurological soft signs and psychopathology in chronic schizophrenia: a cross-sectional study in three age groups. Front Psych 9:98

    Google Scholar 

  • Hsiao J, Yuan TY, Tsai MS et al (2016) Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine 9:257–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudziak RM, Barofsky E, Barofsky DF et al (1996) Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev 6:267–272

    CAS  PubMed  Google Scholar 

  • Jain AK, Xi Y, McCarthy R et al (2016) LncPRESS1 is a p53-regulated lncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol Cell 64:967–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46

    CAS  PubMed  Google Scholar 

  • Kalwa M, Hanzelmann S, Otto S et al (2016) The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 44:10631–10643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keniry A, Oxley D, Monnier P et al (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    CAS  PubMed  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Syed J, Sugiyama H (2016) RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23:1325–1333

    CAS  PubMed  Google Scholar 

  • Li D, Zhang J, Wang M et al (2018) Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat Commun 9:1726

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhao W, Wang M et al (2019) The role of long noncoding RNAs in gene expression regulation. In: Gene expression profiling in cancer. IntechOpen, London

    Google Scholar 

  • Lin C, Miles W (2019) Beyond CLIP: advances and opportunities to measure RBP–RNA and RNA–RNA interactions. Nucleic Acids Res 47:5490–5501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XA, Rizzo V, Puthanveettil SV (2012) Pathologies of axonal transport in neurodegenerative diseases. Transl Neurosci 3:355–372

    PubMed  PubMed Central  Google Scholar 

  • Liu F, Somarowthu S, Pyle AM (2017) Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat Chem Biol 13:282–289

    PubMed  PubMed Central  Google Scholar 

  • Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18:206

    PubMed  PubMed Central  Google Scholar 

  • Massone S, Vassallo I, Fiorino G et al (2011) 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 41:308–317

    CAS  PubMed  Google Scholar 

  • McColl MA, Gupta S, Smith K et al (2017) Promoting long-term health among people with spinal cord injury: what’s new? Int J Environ Res Public Health 14(12):E1520

    PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    CAS  PubMed  Google Scholar 

  • Meng L, Ward AJ, Chun S et al (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:409–412

    CAS  PubMed  Google Scholar 

  • Modarresi F, Faghihi MA, Patel NS et al (2011) Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis 2011:929042

    PubMed  PubMed Central  Google Scholar 

  • Modarresi F, Faghihi MA, Lopez-Toledano MA et al (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30:453–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal T, Subhash S, Vaid R et al (2015) MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moulton J, Jiang S (2009) Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 14:1304–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 104:10679–10684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nan Y, Zhang Y-J (2018) Antisense phosphorodiamidate morpholino oligomers as novel antiviral compounds. Front Microbiol 9:750

    PubMed  PubMed Central  Google Scholar 

  • Noh JH, Kim KM, McClusky WG et al (2018) Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA 9:e1471

    PubMed  PubMed Central  Google Scholar 

  • O’Leary VB, Ovsepian SV, Carrascosa LG et al (2015) PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep 11:474–485

    PubMed  Google Scholar 

  • Obika S, Morio K, Hari Y et al (1999) Preparation and properties of 2′,5′-linked oligonucleotide analogues containing 3′-O,4′-C-methyleneribonucleosides. Bioorg Med Chem Lett 9:515–518

    CAS  PubMed  Google Scholar 

  • Pellestor F, Paulasova P (2004) The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur J Hum Genet 12:694–700

    CAS  PubMed  Google Scholar 

  • Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L et al (2015) LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60:626–636

    CAS  PubMed  Google Scholar 

  • Qian X, Zhao J, Yeung PY et al (2019) Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci 44:33–52

    CAS  PubMed  Google Scholar 

  • Quarrier S, Martin JS, Davis-Neulander L et al (2010) Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16:1108–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 24:651–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid F, Shah A, Shan G (2016) Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics 14:73–80

    PubMed  PubMed Central  Google Scholar 

  • Reggiani C, Coppens S, Sekhara T et al (2017) Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Genome Med 9:67

    PubMed  PubMed Central  Google Scholar 

  • Rinaldi C, Wood MJ (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14:9–21

    CAS  PubMed  Google Scholar 

  • Rogaeva E, Meng Y, Lee JH et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Barrios N, Legascue MF, Benhamed M et al (2018) Splicing regulation by long noncoding RNAs. Nucleic Acids Res 46:2169–2184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11:189–200

    CAS  PubMed  Google Scholar 

  • Schwarz FP, Robinson S, Butler JM (1999) Thermodynamic comparison of PNA/DNA and DNA/DNA hybridization reactions at ambient temperature. Nucleic Acids Res 27:4792–4800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahryari A, Jazi MS, Samaei NM et al (2015) Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front Genet 6:196

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Parag S, Patel R et al (2019) Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell Chem Biol 26(319–330):e316

    Google Scholar 

  • Soler-Bistue A, Zorreguieta A, Tolmasky ME (2019) Bridged nucleic acids reloaded. Molecules 24:e2297

    PubMed  Google Scholar 

  • St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31:239–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto Y, Vigilante A, Darbo E et al (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:491–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Hao Q, Prasanth KV (2018) Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34:142–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunwoo JS, Lee ST, Im W et al (2017) Altered expression of the long noncoding RNA NEAT1 in Huntington’s disease. Mol Neurobiol 54:1577–1586

    CAS  PubMed  Google Scholar 

  • Tripathi V, Shen Z, Chakraborty A et al (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9:e1003368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulitsky I, Shkumatava A, Jan CH et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood JG, Uzilov AV, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Heesch S, van Iterson M, Jacobi J et al (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15:R6

    PubMed  PubMed Central  Google Scholar 

  • Verma A (2018) Recent advances in antisense oligonucleotide therapy in genetic neuromuscular diseases. Ann Indian Acad Neurol 21:3–8

    PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Hu B, Cao F et al (2015) Down regulation of lncSCIR1 after spinal cord contusion injury in rat. Brain Res 1624:314–320

    CAS  PubMed  Google Scholar 

  • Wang DQ, Fu P, Yao C et al (2018) Long non-coding RNAs, novel culprits, or bodyguards in neurodegenerative diseases. Mol Ther Nucleic Acids 10:269–276

    CAS  PubMed  Google Scholar 

  • Watters KE, Abbott TR, Lucks JB (2016) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-seq. Nucleic Acids Res 44:e12

    PubMed  Google Scholar 

  • Weeks KM, Mauger DM (2011) Exploring RNA structural codes with SHAPE chemistry. Acc Chem Res 44:1280–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei CW, Luo T, Zou SS et al (2018) The role of long noncoding RNAs in central nervous system and neurodegenerative diseases. Front Behav Neurosci 12:175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hayden MR, Xu B (2010) BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30:14708–14718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura S, Imai-Sumida M, Tanaka Y et al (2018) Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 75:467–484

    CAS  PubMed  Google Scholar 

  • Yan K, Arfat Y, Li D et al (2016) Structure prediction: new insights into decrypting long noncoding RNAs. Int J Mol Sci 17(1):E132

    PubMed  Google Scholar 

  • Yang F, Zhang H, Mei Y et al (2014) Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell 53:88–100

    CAS  PubMed  Google Scholar 

  • Zampetaki A, Albrecht A, Steinhofel K (2018) Long non-coding RNA structure and function: is there a link? Front Physiol 9:1201

    PubMed  PubMed Central  Google Scholar 

  • Zhou L, Sun K, Zhao Y et al (2015) Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6:10026

    CAS  PubMed  Google Scholar 

  • Zhou HJ, Wang LQ, Wang DB et al (2018) Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKbeta/NF-kappaB signaling pathway. Am J Physiol Cell Physiol 315:C52–C61

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health R01 NS088353; 1R21EY028647-01, 1R21AR071583-01; The Staman Ogilvie Fund-Memorial Hermann Foundation; and Mission Connect, a program of the TIRR Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Qian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakshmi Narayanan, K., Wu, X., Wei, H., Wu, J.Q. (2020). Evolving Roles of Long Noncoding RNAs. In: Jurga, S., Barciszewski, J. (eds) The Chemical Biology of Long Noncoding RNAs. RNA Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44743-4_2

Download citation

Publish with us

Policies and ethics