Skip to main content

Diagnostics of Pigmented Skin Tumors Based on Light-Induced Autofluorescence and Diffuse Reflectance Spectroscopy

  • Chapter
  • First Online:
Multimodal Optical Diagnostics of Cancer

Abstract

Skin neoplasia diagnosis, nevertheless of their easy access and possibility to be observed by the naked eye, is a prominent area for research and development of novel instruments, based on spectroscopic detection and differentiation of cutaneous abnormalities. Due to the variety of cutaneous malignancies’ types and huge set of benign and dysplastic lesions in this tissue with similar appearance early detection of malignant changes is not easy and proper diagnosis is strongly dependent on the dermatologists’ experience. The most popular spectral approaches used for skin cancer investigations are based on light-induced autofluorescence (LIAFS) and diffuse reflectance spectroscopy (DRS) and are applied for searching of specific emission and absorption features that could be used for discrimination of early neoplastic changes. LIAFS approach is appropriate for detection and discrimination of non-pigmented cutaneous lesions, but suboptimal for pigmented pathologies due to low-level fluorescent signal that could be detected. In such cases DRS technique is more appropriate and could be used for highly pigmented skin pathologies, including pigmented malignant melanoma lesions, one of the most severe types of cancer. Combination of these both techniques allows to diagnose the whole set of benign, dysplastic, and malignant cutaneous lesions with high sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Svanberg, S.: Environmental and medical applications of photonic interactions. Phys. Scr. T110, 39–50 (2004)

    Article  CAS  Google Scholar 

  2. Wang, L., Wu, H.: Biomedical Optics: Principles and Imaging. Wiley, Hoboken (2007)

    Google Scholar 

  3. Sinichkin, Y., Utz, S., Mavliutov, A., Pilipenko, H.: In vivo fluorescence spectroscopy of the human skin: experiments and models. J. Biomed. Opt. 3, 201–208 (1998)

    Google Scholar 

  4. Kollias, N., Zonios, G., Stamatas, G.: Fluorescence spectroscopy of skin. Vib. Spectrosc. 28, 17–24 (2002)

    Article  CAS  Google Scholar 

  5. Bigio, J., Mourant, J.R.: Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42, 803–814 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Borisova, E., Avramov, L., Pavlova, P., Pavlova, E., Trchromeoyanova, P.: Qualitative optical evaluation of malignancies related to cutaneous phototype. Proc. SPIE - Dyn. Fluctuations Biomed. Photon. VII. 7563, 7563–750X (2010)

    Google Scholar 

  7. Borisova, E., Bliznakova, I., Mantareva, V., Angelov, I., Avramov, L., Petkova, E.: In: Cao, M.Y. (ed.) Current Management of Malignant Melanoma, p. 141. InTech, New York (2011)

    Google Scholar 

  8. Pavlova, P., Borisova, E., Avramov, L., Petkova, E., Troyanova, P.: In: Murph, M. (ed.) Melanoma in the Clinic - Diagnosis, Management and Complications of Malignancy, p. 87. InTech, New York (2011)

    Google Scholar 

  9. Deev, A.I., Kozhukhova, E., Tyurin-Kuzmin, A., Vladimirov, Y.: Age dependence on skin autofluorescence. Bull. Exp. Biol. Med. 127, 317–319 (1999)

    Article  Google Scholar 

  10. Na, R., Stender, I., Ma, L., Wulf, H.: Autofluorescence spectrum of skin: component bands and body site variations. Skin Res. Tech. 6, 112–117 (2000)

    Article  Google Scholar 

  11. Andersson, R., Parish, J.: The optics of human skin. J. Invest. Dermatol. 77, 13–19 (1981)

    Article  Google Scholar 

  12. Liu, Q.: Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis. World J. Clin. Oncol. 10, 50–63 (2011)

    Article  CAS  Google Scholar 

  13. Na, R., Stender, I., Wulf, H.: Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm. Venerol. 81, 246–249 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Pena, A., Strupler, M., Boulesteix, T., Godeau, G., Schanne-Klein, M.-C.: Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt. Express. 13, 6268–6274 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Ramanujam, N.: Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia. 2, 89–117 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borisova, E., Avramov, L.: Laser system for optical biopsy and in vivo study of the human skin. Proc. SPIE. 4397, 405–409 (2000)

    Google Scholar 

  17. Bachmann, L., Zezell, D., da Costa Ribeiro, A., Gomes, L., Ito, A.: Fluorescence spectroscopy of biological tissues—a review. Appl. Spectr. Rev. 41, 575–590 (2006)

    Article  CAS  Google Scholar 

  18. Sterenborg, H., Motamedi, M., Wagner, R., Duvic, M., Thomsen, S., Jacques, S.: In vivo fluorescence spectroscopy and imaging of human skin tumours. Lasers Med. Sci. 9, 191–201 (1994)

    Google Scholar 

  19. Brancaleon, L., Durkin, A., Tu, J., Menaker, G., Fallon, J., Kollias, N.: In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73, 178–183 (2001)

    Google Scholar 

  20. Panjepour, M., Julius, C., Phan, M., Vo-Dinh, T., Overholt, S.: Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg. Med. 31, 367–373 (2002)

    Google Scholar 

  21. Zeng, H., Mclean, D., MacAulay, C., Palcic, B., Lui, H.: Autofluorescence of basal cell carcinoma. Proc. SPIE. 3245, 314–317 (1998)

    Article  Google Scholar 

  22. Borisova, E., Carstea, E., Cristescu, L., Pavlova, E., Hadjiolov, N., Troyanova, P., Avramov, L.: Light-induced fluorescence spectroscopy and optical coherence tomography of basal cell carcinoma. J. Innov. Opt. Health Sci. 2, 261–268 (2009)

    Article  Google Scholar 

  23. Borisova, E., Troyanova, P., Avramov, L.: Optical biopsy of non-melanin pigmented cutaneous benign and malignant lesions. Proc. SPIE. 6257, (2006). 62570U-1-8

    Google Scholar 

  24. Borisova, E., Nikolova, E., Troyanova, P., Avramov, L.: Autofluorescence and diffuse reflectance spectroscopy of pigment disorders in human skin. JOAM. 10, 717–722 (2008)

    CAS  Google Scholar 

  25. Borisova, E., Troyanova, P., Avramov, L.: Optical biopsy of non-melanin pigmented cutaneous benign and malignant lesions. Proc. SPIE. 6257, (2006). 0U-1

    Google Scholar 

  26. Dramicanin, T., Lenhardt, L., Zekovic, I., Dramicanin, M.: Biophysical characterization of human breast tissues by photoluminescence excitation-emission spectroscopy. J. Res. Phys. 36, 53–62 (2012)

    Article  Google Scholar 

  27. E. Drakaki, E. Kaselouris, M. Makropoulou, A. Serafetinides, A. Tsenga, A. Stratigos, A.Katsambas, Ch. Antoniou, Laser-induced fluorescence spectroscopy for ex vivo diagnosis and classification of basal cell skin carcinoma. Skin Pharmacol. Physiol. 22(3), 158–165 (2009)

    Google Scholar 

  28. Han, S.H., Song, T.K.: In vivo fluorescence spectroscopic monitoring of radiotherapy in cancer treatment. Int. J. Cancer Ther. Oncol. 3(1), 03013 (2015)

    Google Scholar 

  29. Lamola, A., Russo, M.: Fluorescence excitation Spectrum of bilirubin in blood: a model for the action spectrum for phototherapy of neonatal jaundice. Photochem. Photobiol. 90(2), 294–296 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Arroyo-Camarena, S., Domınguez-Cherit, J., Lammoglia-Ordiales, L., Fabila-Bustos, D., Escobar-Pio, A., Stolik, S., Valor-Reed, A., de la Rosa-Vazquez, J.: Spectroscopic and imaging characteristics of pigmented non-melanoma skin Cancer and melanoma in patients with skin phototypes III and IV. Oncol. Ther. 4, 315–331 (2016)

    Article  PubMed  Google Scholar 

  31. Rigal, J., Abella, M., Giron, F., Caisey, L., Lefebvre, M.: Development and validation of new skin chart. Skin Res. Tech. 13, 101–109 (2007)

    Article  Google Scholar 

  32. Wallace, V., Crawford, D., Mortimer, P., Ott, R., Bamber, J.: Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance. Phys. Med. Biol. 45, 735–741 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Marchesini, R., Bono, A., Baroli, C., Lualdi, M., Tomatis, S., Cascinelli, N.: Optical imaging and automated melanoma detection: questions and answers. Melanoma Res. 12, 279–287 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. Chance, B., Cope, M., Gratton, E., Ramanujam, N., Tromberg, B.: Phase measurement of light absorption and scatter in human tissue. Rev. Sci. Instrum. 69, 3457–3481 (1998)

    Article  CAS  Google Scholar 

  35. Marquez, G., Wang, L., Lin, S., Schwartz, J., Thomsen, S.: Anisotropy in the absorption and scattering spectra of chicken breast tissue. Appl. Opt. 37, 798–804 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. Kienle, A., Lilge, L., Patterson, M., Hibst, R., Steiner, R., Wilson, B.: Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt. 35, 2304–2314 (1996)

    Article  CAS  PubMed  Google Scholar 

  37. Marquez, G., Wang, L.: White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra of tissue-like turbid media. Opt. Express. 1, 454–460 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Perelman, L., Backman, V., Wallace, M., Zonios, G., Manoharan, R., Nustrat, A., Shields, S., Seiler, M., Lima, C., Hamano, T., Itzkan, I., Van Dam, J., Crawford, M., Feld, M.: Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys. Rev. Let. 80, 627–630 (1998)

    Article  CAS  Google Scholar 

  39. Yang, C., Perelman, L., Wax, A., Dasari, R., Feld, M.: Feasibility of field-based light scattering spectroscopy. J. Biomed. Opt. 5, 138–143 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. Federici, J., Guzelsu, N., Lim, H., Januzzi, G., Findley, T., Chaudhry, H., Ritter, A.: Noninvasive light-reflection technique for measuring soft-tissue stretch. Appl. Opt. 38, 6653–6660 (1999)

    Article  CAS  PubMed  Google Scholar 

  41. Park, B.S., Youn, J.I.: Topographic measurement of skin color by narrow-band reflectance spectrophotometer and minimal erythema dose (MED) in Koreans. Skin Res. Tech. 4, 14–17 (1998)

    Article  CAS  Google Scholar 

  42. Angelopoulou, E.: Understanding the color of human skin. Proc. SPIE. 4299, 243–252 (2001)

    Article  Google Scholar 

  43. Clarys, P., Alewaeters, K., Lambrecht, R., Barel, A.: Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer®, and the Mexameter®. Skin Res. Tech. 6, 230–238 (2010)

    Article  Google Scholar 

  44. Jacques, S., Saidi, I., Ladner, A., Oelberg, D.: Developing an optical fiber reflectance spectrometer to monitor bilirubinemia in neonates, in “laser-tissue interactions”. Proc. SPIE. 2975, 115–124 (1997)

    Article  Google Scholar 

  45. Lock-Andersen, J., Gniadecka, M., Olivarius, F., Dahlstrom, K., Wulf, H.: Skin temperature of UV-induced erythema correlated to laser Doppler flowmetry and skin reflectance measured redness. Skin Res. Tech. 4, 41–48 (1998)

    Article  CAS  Google Scholar 

  46. Lock-Andersen, J., Olivarius, F., Hedersdal, M., Poulsen, T., Wulf, H.: Minimal erythema dose in UV-shielded and UV-exposed skin predicted by skin reflectance measured pigmentation. Skin Res. Tech. 5, 88–95 (1999)

    Article  Google Scholar 

  47. Wallace, V., Crawford, D., Mortimer, P., Ott, R., Bamber, J.: Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance. Phys. Med. Biol. 45, 735–751 (2000)

    Article  CAS  PubMed  Google Scholar 

  48. Wallace, V., Bamber, J., Crawford, D., Ott, R., Mortimer, P.: Classification of reflectance spectra from pigmented skin lesions, a comparison of multivariate discriminant analysis and artificial neural networks. Phys. Med. Biol. 45, 2859–2871 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. Borisova, E., Pavlova, P., Pavlova, E., Troyanova, P., Avramov, L.: Optical biopsy of human skin – a tool for cutaneous tumours’ diagnosis. Int. J. Bioautomation. 16(1), 53–72 (2012)

    Google Scholar 

  50. Borisova, E., Troyanova, P., Avramov, L.: Influence of measurement geometry on the human skin reflectance spectra detection. Proc. SPIE. 6734, 6734–6716 (2007)

    Google Scholar 

  51. Tuchin, V.: Handbook of Biomedical Diagnostics. SPIE Press, Bellingham (2002)

    Google Scholar 

  52. Marchesini, R., Cascinelli, N., Brambilla, M., Clemente, C., Mascheroni, L., Pignoli, E., Testori, A., Venturoli, D.: In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions II: discriminant analysis between nevus and melanoma. Photochem. Photobiol. 55, 515–522 (1992)

    Google Scholar 

  53. Zeng, H., MacAulay, C., Palcic, B., McLean, D.: A computerized autofluorescence and diffuse reflectance spectroanalyser system for in vivo skin studies. Phys. Med. Biol. 38, 231–240 (1993)

    Google Scholar 

  54. Palmer, G., Marshek, C., Vrotsos, K., Ramanujam, N.: Optical methods for fluorescent and diffuse reflectance measurements of tissue biopsy simples. Las. Surg. Med. 30, 191–200 (2002)

    Article  Google Scholar 

  55. Farina, B., Bartoli, C., Bono, A., Colombo, A., Lualdi, M., Tragni, G., Marchesini, R.: Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits. Phys. Med. Biol. 45, 1243–1254 (2009)

    Article  Google Scholar 

  56. Tomatis, S., Bartoli, C., Bono, A., Cascinelli, N., Clemente, C., Marchesini, R.: Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics. J. Photochem. Photobiol. B: Biol. 42, 32–39 (1998)

    Article  CAS  Google Scholar 

  57. Borisova, E., Troyanova, P., Pavlova, P., Avramov, L.: Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy. Quantum Electron. 38(6), 597–605 (2008)

    Article  CAS  Google Scholar 

  58. Witkowski, A., Ludzik, J., Arginelli, F., Bassoli, S., Benati, E., Casari, A.: Improving diagnostic sensitivity of combined dermoscopy and reflectance confocal microscopy imaging through double reader concordance evaluation in telemedicine settings: a retrospective study of 1000 equivocal cases. PLoS One. 12(11), e0187748 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoo, J., Rigel, D.: Comparing diagnostic sensitivity and specificity for pigmented lesions in clinical dermatologists versus a multispectral digital dermoscopy system. JAAD. 64(Suppl I), AB122 (2011)

    Google Scholar 

  60. Piccolo, D., Ferrari, A., Peris, K., Daidone, R., Ruggeri, B., Climenti, S.: Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: a comparative study. British J. Dermatol. 147, 481–486 (2002)

    Article  CAS  Google Scholar 

  61. Goldstein, A., Tucker, M.: Dysplastic nevi and melanoma. Cancer Epidemiol. Biomark. Prev. 22(4), 528–532 (2013)

    Article  Google Scholar 

  62. Bliznakova, I., Borisova, E., Troyanova, P., Momchilov, N., Avramov, L.: Autofluorescence spectroscopy for noninvasive skin phototypes differentiation. Proc. SPIE. 6604, 6604–6629 (2007)

    Google Scholar 

  63. Borisova, E., Trojanova, P., Avramov, L.: Reflectance measurements of skin lesions – noninvasive method for diagnostic evaluation of pigmented neoplasia. Proc. SPIE. 5862, 20A1–20A11 (2005)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Fund of Bulgarian Ministry of Education and Science under grant #DMU-03-46/2011 and grant #KP06-N28/11/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina G. Borisova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borisova, E.G., Troyanova, P. (2020). Diagnostics of Pigmented Skin Tumors Based on Light-Induced Autofluorescence and Diffuse Reflectance Spectroscopy. In: Tuchin, V.V., Popp, J., Zakharov, V. (eds) Multimodal Optical Diagnostics of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-44594-2_7

Download citation

Publish with us

Policies and ethics