Skip to main content

Carbon Fibre Reinforced Polymer Materials for Antennas and Microwave Technologies

  • Chapter
  • First Online:
Carbon-Related Materials

Abstract

The advances of carbon usage for Carbon Fibre Reinforce Polymer (CFRP) structures led to multiple applications in a large number of industries. This chapter presents methods for CFRP material characterization and usage for aeronautic, automotive and satellite applications. The major CFRP components used for antennas and microwave applications within these industries are presented. The accelerated adoption of carbon-based composites, current challenges and future directions are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Legein F, Lippens P, Pauwels M, Vanlandeghem A (2009) Method for pre-treating fibre reinforced composite plastic materials prior to painting and method for applying a painting layer on fibre reinforced composite plastic materials. Patent no. US 2009/0311442 A1

    Google Scholar 

  2. Nobuyuki A, Norimitsu N, Kenichi Y, Junko K, Hiroshi T (2013) A Prepreg and carbon fibre reinforced composite materials. Patent no. EP 2,666,807 A2

    Google Scholar 

  3. Rese RP, Gossard TW Jr (1999) Near zero CTE carbon fibre hybrid laminate. Patent no. US 5,993,934

    Google Scholar 

  4. Kruckenberg TM, Hill VA (2011) Method of making nanoreinforced carbon fibre and components comprising nanoreinforced carbon fibres. Patent no. US 2011/0001086 A1, 2011

    Google Scholar 

  5. Zhao Q, Zhang K, Zhu S, Xu H, Cao D, Zhao L, Zhang R, Yin W (2019) Review on the electrical resistance/conductivity of carbon fibre reinforced polymer. Appl Sci 9:1–2

    Google Scholar 

  6. Kim HC, See SK (1990) Electrical properties of unidirectional carbon-epoxy composites in wide frequency band. J Phys D Appl Phys 23(7):916

    CAS  Google Scholar 

  7. Ezquerra TA, Connor MT, Roy S, Kulescza M, Fernandes-Nascimento J, Baltá-Calleja FJ (2001) Alternating-current electrical properties of graphite, carbon-black and carbon-fibre polymeric composites. Compos Sci Technol 61(6):903–909

    CAS  Google Scholar 

  8. Lee SE, Oh KS, Kim CG (2006) Electromagnetic characteristics of frequency selective fabric composites. Electron Lett 42(8):439–441

    CAS  Google Scholar 

  9. Galehdar A, Nicholson KJ, Rowe WST, Ghorbani K (2010), The conductivity of unidirectional and quasi isotropic carbon fibre composites. In: The 40th European microwave conference, pp 882–885

    Google Scholar 

  10. Galehdar A, Nicholson KJ, Callus PJ, Rowe WST, John S, Wang CH, Ghorbani K (2012) The strong diamagnetic behaviour of uni-directional carbon fibre reinforced polymer laminates. J Appl Phys 112(11):113921

    Google Scholar 

  11. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas 19(4):377–382

    Google Scholar 

  12. Weir WB (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62(1):33–36

    Google Scholar 

  13. Vicente AN, Dip GM, Junqueira C (2011) The step by step development of NRW method. In: 2011 SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC 2011), pp 738–742. https://doi.org/10.1109/IMOC.2011.6169318

  14. Ghodgaonkar DK, Varadan VV, Varadan VK (1990) Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans Instrum Meas 39(2):387–394

    CAS  Google Scholar 

  15. Galehdar A, Rowe WST, Ghorbani K, Callus PJ, John S, Wang CH (2011) The effect of ply orientation on the performance of antennas in or on carbon fibre composites. Prog Electromagn Res 116:123–136

    Google Scholar 

  16. Doan T, Walters A, Leat C. (2009) Characterisation of electromagnetic properties of carbon fibre composite materials. In: Electromagnetic compatibility symposium Adelaide, pp 87–91

    Google Scholar 

  17. Galehdar A, Callus PJ, Ghorbani K (2011) A novel method of conductivity measurements for carbon-fibre monopole antenna. IEEE Trans Antennas Propag 59(6):2120–2126

    Google Scholar 

  18. Holloway CL, Sarto MS, Johansson M (2005) Analyzing carbon-fibre composite materials with equivalent-layer models. IEEE Trans Electromagn Compat 47(4):833–844

    Google Scholar 

  19. Wasselynck G, Trichet D, Ramdane B, Fouldagar J (2010) Interaction between electromagnetic field and CFRP materials: a new multiscale homogenization approach. IEEE Trans Magn 46(8):3277–3280

    Google Scholar 

  20. Fouladgar J, Wasselynck G, Trichet D (2013) Shielding and reflecting effectiveness of carbon fibre reinforced polymer (CFRP) composites. In: International symposium on electromagnetic theory, pp 104–107

    Google Scholar 

  21. Bojovschi A, Nicholson KJ, Galehdar A, Callus PJ, Ghorbani K (2012) The role of fibre orientation on the electromagnetic performance of waveguides manufactured from carbon fibre reinforced plastic. PIER B 39:267–280

    Google Scholar 

  22. Bojovschi A, Rudd M, Scott J, Ghorbani K (2017) The guide wavelength in a CFRP WR90 waveguide. In: Proceedings of Asia Pacific microwave conference

    Google Scholar 

  23. Gray D, Nicholson KJ, Ghorbani K, Callus PJ (2010) Carbon fibre reinforced plastic slotted waveguide antenna. In: Proceedings of Asia Pacific microwave conference, pp 307–310

    Google Scholar 

  24. Galehdar A, Rowe WST, Ghorbani K, Callus PJ, John S, Wang CH (2012) A frequency selective polarizer using carbon fibre reinforced polymer composite. Prog Electromagn Res C 25:107–118

    Google Scholar 

  25. Mehdipour A, Sebak A-R, Trueman CW, Rosca ID, Hoa SV (2011) Performance of microstrip patch antenna on a reinforced carbon fibre composite ground plane. Microw Opt Technol Lett 53(6):1328–1331

    Google Scholar 

  26. Galehdar A, Callus PJ, Rowe WST, Wang CH, John S, Ghorbani K (2012) Capacitively fed cavity-backed slot antenna in carbon-fibre composite panels. IEEE Antenna Wireless Propag Lett 11:1028–1031

    Google Scholar 

  27. Bojovschi A, Rowe WR, Wong KL (2010) Electromagnetic field intensity generated by partial discharge in high voltage insulating materials. Prog Electromagn Res 104:167–182

    Google Scholar 

  28. Megali G, Pellicano D, Cacciola M, Calcagno S, Versaci M, Morabito FC (2010) EC modeling and enhancement signals in CFRP inspection. Prog Electromagn Res M 14:45–60

    Google Scholar 

  29. Knott G, Viquerat Andrew A, Bojovschi A (2018) Design of deployable helical antennas for space-based automatic identification system reception. In: Proceedings of emerging sensing technologies summit 2018, pp 1–9

    Google Scholar 

  30. Sanjuan J, Preston A, Korytov D, Spector A, Freise A, Dixon G, Livas J, Mueller G (2011) Carbon fibre reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope. Rev Sci Instrum 82:124501-1–124501-11

    Google Scholar 

  31. Bojovschi A, Scott J, Ghorbani K (2013) The reflectivity of carbon fibre reinforced polymer short circuit illuminated by guided microwaves. Appl Phys Lett 103:111910-1–111910-5

    Google Scholar 

  32. Bojovschi A, Gray D, Ghorbani K (2013) A loop-type end launcher for carbon fibre reinforced polymer waveguides. PIER M 31:13–27

    Google Scholar 

  33. Lockyer AJ, Alt KH, Coughlin DP, Durham MD, Kudva JN, Goetz AC, Tuss J (1999) Design and development of a conformal load-bearing smart skin antenna: overview of the AFRL smart skin structures technology demonstration (S3TD). Proc SPIE 3674:4010–4024

    Google Scholar 

  34. Callus PJ (2008) Novel concepts for conformal load-bearing antenna structure. Report No. DSTO-TR-2096, Defence Science and Technology Organisation, Australia

    Google Scholar 

  35. Callus PJ, de LaHarpe JCD, Tuss JM, Baron WG, Kuhl DG (2012) Slotted waveguide antenna stiffened structure. United States Patent No. 8149177, April 3

    Google Scholar 

  36. Nicholson KJ, Callus PJ (2010) Antenna patterns from single slots in carbon fibre reinforced plastic waveguides. Report No. DSTO-TR-2389, Defence Science and Technology Organisation, Australia

    Google Scholar 

  37. Stevenson AF (1948) Theory of slots in rectangular waveguides. J Appl Phys 19:24–38

    Google Scholar 

  38. Golfman Y (2011) Hybrid anisotropic materials for structural aviation parts. Taylor & Francis Group, Boca Raton

    Google Scholar 

  39. Niu MCY (1996) Composite airframe structures, 2nd edn. Conmilit Press Ltd., Hong Kong

    Google Scholar 

  40. Callus PJ, Nicholson KJ, Bojovschi A, Ghorbani K, Baron W, Tuss J (2012) A planar antenna array manufactured from carbon fibre reinforced plastic. In: 28th International congress of the aeronautical sciences, pp 1–10

    Google Scholar 

  41. Bojovschi A, Nicholson KJ, Ghorbani K (2018) Load bearing slotted waveguide carbon fibre reinforced polymer antenna stiffened structure. In: Emerging sensing technologies summit 2018

    Google Scholar 

  42. DeLoach TR, Kusek WW (1979) Whip antenna formed of electronically conductive graphite strands embedded in a resin material. Patent no. US 4,134,120

    Google Scholar 

  43. Artner G, Langwieser R (2017) Performance of an automotive antenna module on a carbon-fibre composite car roof. In: 10th European conference on antennas and propagation (EuCAP), pp 1–4

    Google Scholar 

  44. Ekiz L, Thiel A, Klemp O, Mecklenbrauker CF (2013) MIMO performance evaluation of automotive qualified LTE antennas. In: 7th European conference on antennas and propagation (EuCAP)

    Google Scholar 

  45. Artner G, Langwieser R, Lasser G, Mecklenbrauker CF (2014) Effect of carbon-fibre composites as ground plane material on antenna performance. In: IEEE-APS topical conference on antennas and propagation in wireless communications (APWC)

    Google Scholar 

  46. Artner G, Langwieser R, Mecklenbräuker CF (2017) Concealed CFRP vehicle chassis antenna cavity. IEEE Antennas Wireless Propag Lett 16:1415–1418

    Google Scholar 

  47. Artner G, Kotterman W, Galdo GD, Hein MA (2018) Conformal automotive roof-top antenna cavity with increased coverage to vulnerable road users. IEEE Antennas Wireless Propag Lett 17(12):2399–2403

    Google Scholar 

  48. Schmid M, Scheulen D, Barho R, Weimer P (2004) Deployable antenna reflector. Patent no. EP 1 386 838 A1

    Google Scholar 

  49. Knott G, Wu C, Viquerat Andrew A (2019) Deployable bistable composite helical antennas for small satellite applications. In: Proceedings of AIAA SciTech 2019 Forum, AIAA. https://doi.org/10.2514/6.2019-1260

  50. Knott G, Viquerat A (2019) An ultra-compact helical antenna for small satellites. In: 70th international astronautical congress. International Astronautical Federation, Washington, DC

    Google Scholar 

  51. Knott G, Viquerat A (2019) Helical bistable composite slit tubes. Compos Struct 207:711–726

    Google Scholar 

  52. Chan KK, Martin R, Chadwick K (1998) A broadband end launcher coaxial-to-waveguide transition for waveguide phased arrays. In: Proceedings of IEEE, pp 1390–1393

    Google Scholar 

  53. Deshpande MD, Das BN, Sanyal GS (Aug. 1979) Analysis of an end launcher for an X-band rectangular waveguide. IEEE Trans Microw Theory Tech 27(8):731–735

    Google Scholar 

  54. Saad SM (Feb. 1990) A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher. IEEE Trans Microw Theory Tech 38(2):129–134

    Google Scholar 

  55. Levy R, Hendrick LW (2002) Analysis and synthesis of in-line coaxial-to-waveguide adapters. In: Proceedings of IEEE microwave symposium, Seattle, USA, pp 809–811

    Google Scholar 

  56. Dix JC (1963) Design of waveguide/coaxial transition for the band 2.5–4.1 Gc/s. Proc Inst Electr Eng 110(2):253–255

    Google Scholar 

  57. Wheeler GJ (1957) Broad band waveguide to coaxial transitions. IRE Convention Record Part 1, pp 182–185

    Google Scholar 

  58. Tang R, Wong NS (1968) Multimode phased array element for wide scan angle impedance matching. Proc IEEE 56:1951–1959

    Google Scholar 

  59. Das BN, Sanyal GS (1963) Coaxial to waveguide transition (end launcher type). In: Proceedings of the Institute of Electrical Engineers, London, vol 110, pp 253–255

    Google Scholar 

  60. Ellison BN, Little LT, Mann CM, Matheson DN (1991) Quality and performance of tunable waveguide backshorts. Electron Lett 27:139–141

    Google Scholar 

  61. Bilik V, Bezek J (2006) Noncontacting R26-waveguide sliding short for industrial applications. In 2006 European microwave conference, Manchester, pp 1032–1035

    Google Scholar 

  62. Eisenhart RL, Monzello RC (1982) A better waveguide short circuit. In: IEEE MTT-S international microwave symposium digest, Dallas, TX, USA, pp 360–362

    Google Scholar 

  63. Brewer MK, Raisanen AV (1982) Dual-harmonic noncontacting millimeter waveguide backshorts: theory, design, and test. IEEE Trans Microwave Theory Tech 30(5):708–714

    Google Scholar 

  64. Weller TM, Katehi LPB, McGrath WR (1995) Analysis and design of a novel noncontacting waveguide backshort. IEEE Trans Microw Theory Tech 43(5):1023–1030

    Google Scholar 

  65. McGrath WR, Weller TM, Katehi LPB (1995) A novel noncontacting waveguide backshort for submillimeter wave frequencies. Int J Infrared Millim Waves 16:237–256

    Google Scholar 

  66. Kerr AR (1988) An adjustable short-circuit for millimeter waveguides. Electronics Division Internal Report No. 280. National Radio Astronomy Observatory, Charlottesville, VA

    Google Scholar 

  67. Gould WI Jr., Evans J (1973) Millimeter wave antenna system. Patent no 3,716,869

    Google Scholar 

  68. Jonda W (1978) Lightweight structural part formed of carbon fibre-reinforced plastic. Patent no US 4,092,453

    Google Scholar 

  69. Curran S, Talla J, Dias S (2012) Antennas based on a conductive polymer composite and method for production thereof. Patent no. US 8,248,305 B2

    Google Scholar 

  70. Konanur AS, Karacaoglu U (2016) Magnetic field pass through surfaces in carbon fibre reinforced polymer. Patent no. US 9,252,482, B2

    Google Scholar 

  71. Mehdipour A, Rosca ID, Sebak A-R, Trueman CW, Hoa SV (2010) Advanced carbon-fibre composite materials for RFID tag antenna applications. ACES J 25(3):218–229

    Google Scholar 

  72. Jerome P (2001) Composite materials in the Airbus A380-from history to future. In: Proceedings of 13th ICCM conferences, Beijing, China

    Google Scholar 

  73. Miura K, Furuya H (1988) Adaptive structure concept for future space applications. AIAA J 26(8):994–1002

    Google Scholar 

  74. Sproewitz T, Block J, Bäger A, Hauer L, Schuetze M (2011) Deployment verification of large CFRP helical high-gain antenna for AIS signals. In: Proceedings of aerospace conference, pp 1–12

    Google Scholar 

  75. Rebolo-Ifrán N, Grilli MG, Lambertucci SA (2019) Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ Conserv 46(3):205–210

    Google Scholar 

  76. Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure–property relationship modeling of diverse materials properties. Chem Rev 112(5):2889–2919

    CAS  Google Scholar 

  77. Le TC, Winkler DA (2016) Discovery and optimization of materials using evolutionary approaches. Am Chem Soc 116(10):6107–6132

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexe Bojovschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bojovschi, A., Knott, G., Viquerat, A., Nicholson, K.J., Le, T.C. (2020). Carbon Fibre Reinforced Polymer Materials for Antennas and Microwave Technologies. In: Miron, C., Mele, P., Kaneko, S., Endo, T. (eds) Carbon-Related Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-44230-9_3

Download citation

Publish with us

Policies and ethics