Skip to main content

The Histone Deacetylase Inhibitor Entinostat/Syndax 275 in Osteosarcoma

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1257))

Abstract

The prognosis for metastatic osteosarcoma (OS) is poor and has not changed in several decades. Therapeutic paradigms that target and exploit novel molecular pathways are desperately needed. Recent preclinical data suggests that modulation of the Fas/FasL pathway may offer benefit in the treatment of refractory osteosarcoma. Fas and FasL are complimentary receptor-ligand proteins. Fas is expressed in multiple tissues, whereas FasL is restricted to privilege organs, such as the lung. Fas expression has been shown to inversely correlate with the metastatic potential of OS cells; tumor cells which express high levels of Fas have decreased metastatic potential and the ones that reach the lung undergo cell death upon interaction with constitutive FasL in the lung. Agents such as gemcitabine and the HDAC inhibitor, entinostat/Syndax 275, have been shown to upregulate Fas expression on OS cells, potentially leading to decreased OS pulmonary metastasis and improved outcome. Clinical trials are in development to evaluate this combination as a potential treatment option for patients with refractory OS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaste SC et al (1999) Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features. Cancer 86(8):1602–1608

    CAS  PubMed  Google Scholar 

  2. Meyers PA et al (2005) Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 23(9):2004–2011

    CAS  PubMed  Google Scholar 

  3. Meyers PA et al (2008) Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children’s Oncology Group. J Clin Oncol 26(4):633–638

    CAS  PubMed  Google Scholar 

  4. Guma SR et al (2014) Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatr Blood Cancer 61(8):1362–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu Z et al (2017) Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis. Oncotarget 8(35):59570–59580

    PubMed  PubMed Central  Google Scholar 

  6. Bielack SS et al (2015) Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol 33(20):2279–2287

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen JK et al (2014) Programmed cell death ligand 1 expression in osteosarcoma. Cancer Immunol Res 2(7):690–698

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lussier DM et al (2015) Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J Immunother 38(3):96–106

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Longhi A et al (2006) Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 32(6):423–436

    PubMed  Google Scholar 

  10. French LE et al (1996) Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 133(2):335–343

    CAS  PubMed  Google Scholar 

  11. Wang WS et al (2006) Matrix metalloproteinase-7 increases resistance to Fas-mediated apoptosis and is a poor prognostic factor of patients with colorectal carcinoma. Carcinogenesis 27(5):1113–1120

    CAS  PubMed  Google Scholar 

  12. Liu B et al (2019) Leucine-rich repeat neuronal protein-1 suppresses apoptosis of gastric cancer cells through regulation of Fas/FasL. Cancer Sci 110(7):2145–2155

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Volm M, Koomagi R (2000) Relevance of proliferative and pro-apoptotic factors in non-small-cell lung cancer for patient survival. Br J Cancer 82(10):1747–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang WS et al (2004) Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23(39):6666–6671

    CAS  PubMed  Google Scholar 

  15. Koshkina NV et al (2007) Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 5(10):991–999

    CAS  PubMed  Google Scholar 

  16. Yang D et al (2008) Downregulation of IFN-gammaR in association with loss of Fas function is linked to tumor progression. Int J Cancer 122(2):350–362

    CAS  PubMed  Google Scholar 

  17. Liu K, Abrams SI (2003) Alterations in Fas expression are characteristic of, but not solely responsible for, enhanced metastatic competence. J Immunol 170(12):5973–5980

    CAS  PubMed  Google Scholar 

  18. Marina N et al (2004) Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 9(4):422–441

    PubMed  Google Scholar 

  19. Worth LL et al (2002) Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep 9(4):823–827

    CAS  PubMed  Google Scholar 

  20. Jia SF, Worth LL, Kleinerman ES (1999) A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Metastasis 17(6):501–506

    CAS  PubMed  Google Scholar 

  21. Lafleur EA et al (2004) Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res 10(23):8114–8119

    CAS  PubMed  Google Scholar 

  22. Gordon N et al (2007) Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 13(15 Pt 1):4503–4510

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon N, Kleinerman ES (2010) Aerosol therapy for the treatment of osteosarcoma lung metastases: targeting the Fas/FasL pathway and rationale for the use of gemcitabine. J Aerosol Med Pulm Drug Deliv 23(4):189–196

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia SF et al (2003) Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin Cancer Res 9(9):3462–3468

    CAS  PubMed  Google Scholar 

  25. Koshkina NV, Rao-Bindal K, Kleinerman ES (2011) Effect of the histone deacetylase inhibitor SNDX-275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metastases. Cancer 117(15):3457–3467

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Koshkina NV et al (2000) 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin Cancer Res 6(7):2876–2880

    CAS  PubMed  Google Scholar 

  27. Capobianco E et al (2014) Separate and combined effects of DNMT and HDAC inhibitors in treating human multi-drug resistant osteosarcoma HosDXR150 cell line. PLoS One 9(4):e95596

    PubMed  PubMed Central  Google Scholar 

  28. Marchi E et al (2005) Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer 104(11):2437–2441

    CAS  PubMed  Google Scholar 

  29. Perez-Manga G et al (2000) Gemcitabine in combination with doxorubicin in advanced breast cancer: final results of a phase II pharmacokinetic trial. J Clin Oncol 18(13):2545–2552

    CAS  PubMed  Google Scholar 

  30. Rizzieri DA et al (2003) Phase I evaluation of prolonged-infusion gemcitabine with fludarabine for relapsed or refractory acute myelogenous leukemia. Clin Cancer Res 9(2):663–668

    CAS  PubMed  Google Scholar 

  31. Santoro A et al (2000) Gemcitabine in the treatment of refractory Hodgkin’s disease: results of a multicenter phase II study. J Clin Oncol 18(13):2615–2619

    CAS  PubMed  Google Scholar 

  32. Turner AI et al (2006) Single agent gemcitabine chemotherapy in dogs with spontaneously occurring lymphoma. J Vet Intern Med 20(6):1384–1388

    PubMed  Google Scholar 

  33. Marconato L et al (2008) Adjuvant gemcitabine after surgical removal of aggressive malignant mammary tumours in dogs. Vet Comp Oncol 6(2):90–101

    CAS  PubMed  Google Scholar 

  34. Zak D et al (2005) Combination of gemcitabine and irinotecan for recurrent metastatic osteogenic sarcoma. Clin Adv Hematol Oncol 3(4):297–9; discussion 300-2

    PubMed  Google Scholar 

  35. Merimsky O et al (2000) Gemcitabine in bone sarcoma resistant to Doxorubicin-based chemotherapy. Sarcoma 4(1–2):7–10

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McMahon MB et al (2010) Biological activity of gemcitabine against canine osteosarcoma cell lines in vitro. Am J Vet Res 71(7):799–808

    CAS  PubMed  Google Scholar 

  37. McMahon M et al (2011) Adjuvant carboplatin and gemcitabine combination chemotherapy postamputation in canine appendicular osteosarcoma. J Vet Intern Med 25(3):511–517

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ando T et al (2005) Gemcitabine inhibits viability, growth, and metastasis of osteosarcoma cell lines. J Orthop Res 23(4):964–969

    CAS  PubMed  Google Scholar 

  39. Anderson PM et al (2005) Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin Cancer Res 11(19 Pt 1):6895–6900

    CAS  PubMed  Google Scholar 

  40. Okuno S et al (2002) Phase II trial of gemcitabine in advanced sarcomas. Cancer 94(12):3225–3229

    CAS  PubMed  Google Scholar 

  41. Okuno S et al (2003) Phase II trial of gemcitabine in patients with advanced sarcomas (E1797): a trial of the Eastern Cooperative Oncology Group. Cancer 97(8):1969–1973

    CAS  PubMed  Google Scholar 

  42. Wagner-Bohn A et al (2006) Phase II study of gemcitabine in children with solid tumors of mesenchymal and embryonic origin. Anti-Cancer Drugs 17(7):859–864

    CAS  PubMed  Google Scholar 

  43. Martin-Broto J et al (2017) Gemcitabine plus sirolimus for relapsed and progressing osteosarcoma patients after standard chemotherapy: a multicenter, single-arm phase II trial of Spanish Group for Research on Sarcoma (GEIS). Ann Oncol 28(12):2994–2999

    CAS  PubMed  Google Scholar 

  44. Wang Y et al (2018) Licoricidin enhances gemcitabine-induced cytotoxicity in osteosarcoma cells by suppressing the Akt and NF-kappaB signal pathways. Chem Biol Interact 290:44–51

    CAS  PubMed  Google Scholar 

  45. Caliskan Y et al (2019) A new therapeutic combination for osteosarcoma: gemcitabine and Clofazimine co-loaded liposomal formulation. Int J Pharm 557:97–104

    CAS  PubMed  Google Scholar 

  46. Palmerini E et al (2016) Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone. BMC Cancer 16:280

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee JA et al (2016) Higher gemcitabine dose was associated with better outcome of osteosarcoma patients receiving gemcitabine-docetaxel chemotherapy. Pediatr Blood Cancer 63(9):1552–1556

    CAS  PubMed  Google Scholar 

  48. Rapkin L et al (2012) Gemcitabine and docetaxel (GEMDOX) for the treatment of relapsed and refractory pediatric sarcomas. Pediatr Blood Cancer 59(5):854–858

    PubMed  Google Scholar 

  49. Navid F et al (2008) Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer 113(2):419–425

    CAS  PubMed  Google Scholar 

  50. Hara H et al (2019) Gemcitabine and docetaxel combination chemotherapy for advanced bone and soft tissue sarcomas: protocol for an open-label, non-randomised, phase 2 study. BMC Cancer 19(1):725

    PubMed  PubMed Central  Google Scholar 

  51. Gravett AM, Dalgleish AG, Copier J (2019) In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells. Sci Rep 9(1):1544

    PubMed  PubMed Central  Google Scholar 

  52. Pei Q et al (2015) Gemcitabine sensitizes pancreatic cancer cells to the CTLs antitumor response induced by BCG-stimulated dendritic cells via a Fas-dependent pathway. Pancreatology 15(3):233–239

    CAS  PubMed  Google Scholar 

  53. Koshkina NV, Kleinerman ES (2005) Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. Int J Cancer 116(3):458–463

    CAS  PubMed  Google Scholar 

  54. Rodriguez CO Jr et al (2010) Aerosol gemcitabine: preclinical safety and in vivo antitumor activity in osteosarcoma-bearing dogs. J Aerosol Med Pulm Drug Deliv 23(4):197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Berdasco M, Esteller M (2013) Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 132(4):359–383

    CAS  PubMed  Google Scholar 

  56. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26(37):5541–5552

    CAS  PubMed  Google Scholar 

  57. Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6(6):579–589

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143(3):323–336

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guha M (2015) HDAC inhibitors still need a home run, despite recent approval. Nat Rev Drug Discov 14(4):225–226

    CAS  PubMed  Google Scholar 

  60. Eckschlager T et al (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18(7)

    Google Scholar 

  61. Qiu L et al (2000) Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 11(6):2069–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107(4):600–608

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaiyawat P et al (2018) Expression patterns of class I histone deacetylases in osteosarcoma: a novel prognostic marker with potential therapeutic implications. Mod Pathol 31(2):264–274

    CAS  PubMed  Google Scholar 

  64. Deng Z et al (2016) Histone deacetylase inhibitor trichostatin a promotes the apoptosis of osteosarcoma cells through p53 signaling pathway activation. Int J Biol Sci 12(11):1298–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96(2):293–304

    CAS  PubMed  Google Scholar 

  66. Wittenburg LA et al (2011) The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin. Cancer Chemother Pharmacol 67(1):83–92

    CAS  PubMed  Google Scholar 

  67. Thayanithy V et al (2012) Combinatorial treatment of DNA and chromatin-modifying drugs cause cell death in human and canine osteosarcoma cell lines. PLoS One 7(9):e43720

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hou M et al (2018) Synergistic antitumor effect of suberoylanilide hydroxamic acid and cisplatin in osteosarcoma cells. Oncol Lett 16(4):4663–4670

    PubMed  PubMed Central  Google Scholar 

  69. Pettke A et al (2016) Suberanilohydroxamic acid (vorinostat) synergistically enhances the cytotoxicity of doxorubicin and cisplatin in osteosarcoma cell lines. Anti-Cancer Drugs 27(10):1001–1010

    CAS  PubMed  Google Scholar 

  70. Matta H et al (2002) Role of MRIT/cFLIP in protection against chemotherapy-induced apoptosis. Cancer Biol Ther 1(6):652–660

    CAS  PubMed  Google Scholar 

  71. Klisovic DD et al (2003) Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Invest Ophthalmol Vis Sci 44(6):2390–2398

    PubMed  Google Scholar 

  72. Kwon SH et al (2002) Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 277(3):2073–2080

    CAS  PubMed  Google Scholar 

  73. Rivera-Del Valle N et al (2010) PCI-24781, a novel hydroxamic acid HDAC inhibitor, exerts cytotoxicity and histone alterations via Caspase-8 and FADD in leukemia cells. Int J Cell Biol 2010:207420

    PubMed  PubMed Central  Google Scholar 

  74. Imai T et al (2003) FR901228 induces tumor regression associated with induction of Fas ligand and activation of Fas signaling in human osteosarcoma cells. Oncogene 22(58):9231–9242

    CAS  PubMed  Google Scholar 

  75. Rao-Bindal K et al (2013) The histone deacetylase inhibitor, MS-275 (Entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets 13:411

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rao-Bindal K et al (2013) Expression of c-FLIP in pulmonary metastases in osteosarcoma patients and human xenografts. Pediatr Blood Cancer 60(4):575–579

    PubMed  Google Scholar 

  77. Watanabe K, Okamoto K, Yonehara S (2005) Sensitization of osteosarcoma cells to death receptor-mediated apoptosis by HDAC inhibitors through downregulation of cellular FLIP. Cell Death Differ 12(1):10–18

    CAS  PubMed  Google Scholar 

  78. Aron JL et al (2003) Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 102(2):652–658

    CAS  PubMed  Google Scholar 

  79. Lucas DM et al (2004) The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18(7):1207–1214

    CAS  PubMed  Google Scholar 

  80. Yamanegi K et al (2012) Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death. Int J Oncol 41(1):83–91

    CAS  PubMed  Google Scholar 

  81. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19(1):36–41

    CAS  PubMed  Google Scholar 

  82. de Hooge AS et al (2007) Expression of cellular FLICE inhibitory protein, caspase-8, and protease inhibitor-9 in Ewing sarcoma and implications for susceptibility to cytotoxic pathways. Clin Cancer Res 13(1):206–214

    PubMed  Google Scholar 

  83. Korkolopoulou P et al (2004) c-FLIP expression in bladder urothelial carcinomas: its role in resistance to Fas-mediated apoptosis and clinicopathologic correlations. Urology 63(6):1198–1204

    PubMed  Google Scholar 

  84. Bullani RR et al (2001) Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 117(2):360–364

    CAS  PubMed  Google Scholar 

  85. Longley DB et al (2006) c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 25(6):838–848

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiany, S., Harrison, D., Gordon, N. (2020). The Histone Deacetylase Inhibitor Entinostat/Syndax 275 in Osteosarcoma. In: Kleinerman, E.S., Gorlick, R. (eds) Current Advances in Osteosarcoma . Advances in Experimental Medicine and Biology, vol 1257. Springer, Cham. https://doi.org/10.1007/978-3-030-43032-0_7

Download citation

Publish with us

Policies and ethics