Skip to main content

Effects of Exercise on Cancer Treatment Completion and Efficacy

  • Chapter
  • First Online:

Abstract

Exercise during cancer treatments improves physical fitness, symptoms, and quality of life in several cancer patient groups; however, its effects on treatment completion and response are largely unknown. Here, we review the preclinical and clinical evidence of the potential effects of exercise on cancer treatment completion and efficacy. We first propose a framework to highlight the clinical pathways via which exercise during cancer treatment may impact cancer outcomes. We also discuss the potential complex interactions between exercise and cancer treatment efficacy. In terms of cancer treatment completion rates, there is preliminary evidence that exercise may improve chemotherapy completion in early stage breast cancer patients; however, very little research has examined other cancer treatment modalities or patient groups. In terms of cancer treatment efficacy, preclinical studies have demonstrated that exercise alone may have positive, neutral, or even negative direct antitumor effects. Moreover, when combined with a chemotherapy agent, exercise may enhance or interfere with treatment efficacy. Several clinical trials have demonstrated that exercise during chemotherapy may improve treatment outcomes; however, these trials were not designed to answer this question. Further research is needed to determine whether exercise during cancer treatment has any meaningful effects on cancer treatment completion and efficacy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Foote M. The importance of planned dose of chemotherapy on time: do we need to change our clinical practice? Oncologist. 1998;3(5):365–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lyman GH. Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Cancer Netw. 2009;7(1):99–108. https://doi.org/10.6004/jnccn.2009.0009.

  3. Green JA, Dawson AA, Fell LF, Murray S. Measurement of drug dosage intensity in MVPP therapy in Hodgkin’s disease. Br J Clin Pharmacol. 1980;9(5):511–4. https://doi.org/10.1111/j.1365-2125.1980.tb05847.x.

  4. Wildiers H, Reiser M. Relative dose intensity of chemotherapy and its impact on outcomes in patients with early breast cancer or aggressive lymphoma. Crit Rev Oncol Hematol. 2011;77(3):221–40. https://doi.org/10.1016/j.critrevonc.2010.02.002.

    Article  PubMed  Google Scholar 

  5. Chirivella I, Bermejo B, Insa A, Perez-Fidalgo A, Magro A, Rosello S, et al. Optimal delivery of anthracycline-based chemotherapy in the adjuvant setting improves outcome of breast cancer patients. Breast Cancer Res Treat. 2009;114(3):479–84. https://doi.org/10.1007/s10549-008-0018-1.

    Article  CAS  PubMed  Google Scholar 

  6. Bonadonna G, Valagussa P. Dose-response effect of adjuvant chemotherapy in breast cancer. N Engl J Med. 1981;304(1):10–5. https://doi.org/10.1056/NEJM198101013040103.

    Article  CAS  PubMed  Google Scholar 

  7. Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8(8):CD008465. https://doi.org/10.1002/14651858.CD008465.pub2.

    Article  Google Scholar 

  8. Bland KA, Zadravec K, Landry T, Weller S, Meyers L, Campbell KL. Impact of exercise on chemotherapy completion rate: a systematic review of the evidence and recommendations for future exercise oncology research. Crit Rev Oncol Hematol. 2019;136:79–85. https://doi.org/10.1016/j.critrevonc.2019.02.005.

    Article  PubMed  Google Scholar 

  9. Courneya KS, Segal RJ, Mackey JR, Gelmon K, Reid RD, Friedenreich CM, et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 2007;25(28):4396–404. https://doi.org/10.1200/JCO.2006.08.2024.

    Article  PubMed  Google Scholar 

  10. van Waart H, Stuiver MM, van Harten WH, Geleijn E, Kieffer JM, Buffart LM, et al. Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. J Clin Oncol. 2015;33(17):1918–27. https://doi.org/10.1200/JCO.2014.59.1081.

    Article  CAS  PubMed  Google Scholar 

  11. Sanft T, Harrigan M, Cartmel B, Ferrucci L, Basen-Enquist K, Hershman D, et al. A randomized trial of a healthy lifestyle intervention versus usual care on chemotherapy and endocrine therapy adherence rates in women with breast cancer: the Lifestyle Exercise and Nutrition Early after Diagnosis (LEANER) study. J Clin Oncol. 2019;37(15_suppl):TPS11633.

    Article  Google Scholar 

  12. Shayne M, Crawford J, Dale DC, Culakova E, Lyman GH, Study Group ANC. Predictors of reduced dose intensity in patients with early-stage breast cancer receiving adjuvant chemotherapy. Breast Cancer Res Treat. 2006;100(3):255–62. https://doi.org/10.1007/s10549-006-9254-4.

  13. Lyman GH, Dale DC, Friedberg J, Crawford J, Fisher RI. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J Clin Oncol. 2004;22(21):4302–11. https://doi.org/10.1200/JCO.2004.03.213.

    Article  CAS  PubMed  Google Scholar 

  14. Lyman GH, Dale DC, Crawford J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J Clin Oncol. 2003;21(24):4524–31. https://doi.org/10.1200/JCO.2003.05.002.

    Article  PubMed  Google Scholar 

  15. Hanna RK, Poniewierski MS, Laskey RA, Lopez MA, Shafer A, Van Le L, et al. Predictors of reduced relative dose intensity and its relationship to mortality in women receiving multi-agent chemotherapy for epithelial ovarian cancer. Gynecol Oncol. 2013;129(1):74–80. https://doi.org/10.1016/j.ygyno.2012.12.017.

    Article  CAS  PubMed  Google Scholar 

  16. Prado CM, Cushen SJ, Orsso CE, Ryan AM. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc. 2016;75(2):188–98. https://doi.org/10.1017/S0029665115004279.

    Article  CAS  PubMed  Google Scholar 

  17. Collins JT, Noble S, Chester J, Davies HE, Evans WD, Farewell D, et al. The value of physical performance measurements alongside assessment of sarcopenia in predicting receipt and completion of planned treatment in non-small cell lung cancer: an observational exploratory study. Support Care Cancer. 2018;26(1):119–27. https://doi.org/10.1007/s00520-017-3821-6.

    Article  PubMed  Google Scholar 

  18. Christensen JF, Simonsen C, Hojman P. Exercise training in cancer control and treatment. Compr Physiol. 2018;9(1):165–205. https://doi.org/10.1002/cphy.c180016.

    Article  PubMed  Google Scholar 

  19. Edwards KM, Thomas V, Seet-Lee C, Cheema BS, Boyer M., Marthick M. Piloting the effect of aerobic exercise during chemotherapy infusion in patients with cancer. Med Sci Sports Exerc. 2018;50(5S):383–4. https://doi.org/10.1249/01.mss.0000536349.60070.44.

  20. Kerrigan D, Keteyian S, Ehrman JK, Brown S, Filipiak R, Martinez N, et al. A pilot study of aerobic exercise performed in breast cancer patients during chemotherapy infusion. J Clin Oncol. 2010;28(15_suppl):e19527. https://doi.org/10.1200/jco.2010.28.15_suppl.e19527.

  21. Kirkham AA, Paterson DI, Prado CM, Mackey JR, Courneya KS, Pituskin E, et al. Rationale and design of the Caloric Restriction and Exercise protection from Anthracycline Toxic Effects (CREATE) study: a 3-arm parallel group phase II randomized controlled trial in early breast cancer. BMC Cancer. 2018;18(1):864. https://doi.org/10.1186/s12885-018-4778-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirkham AA, Eves ND, Shave RE, Bland KA, Bovard J, Gelmon KA, et al. The effect of an aerobic exercise bout 24 h prior to each doxorubicin treatment for breast cancer on markers of cardiotoxicity and treatment symptoms: a RCT. Breast Cancer Res Treat. 2018;167(3):719–29. https://doi.org/10.1007/s10549-017-4554-4.

    Article  CAS  PubMed  Google Scholar 

  23. Kirkham AA, Shave RE, Bland KA, Bovard JM, Eves ND, Gelmon KA, et al. Protective effects of acute exercise prior to doxorubicin on cardiac function of breast cancer patients: a proof-of-concept RCT. Int J Cardiol. 2017;245:263–70. https://doi.org/10.1016/j.ijcard.2017.07.037.

    Article  CAS  PubMed  Google Scholar 

  24. Ascensao A, Lumini-Oliveira J, Machado NG, Ferreira RM, Goncalves IO, Moreira AC, et al. Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clin Sci (Lond). 2011;120(1):37–49. https://doi.org/10.1042/CS20100254.

    Article  CAS  Google Scholar 

  25. Wonders KY, Hydock DS, Schneider CM, Hayward R. Acute exercise protects against doxorubicin cardiotoxicity. Integr Cancer Ther. 2008;7(3):147–54. https://doi.org/10.1177/1534735408322848.

    Article  CAS  PubMed  Google Scholar 

  26. Kirkham AA. Maximizing metastatic breast cancer patient outcomes using diet and exercise. Unpublished.

    Google Scholar 

  27. Schmidt T, van Mackelenbergh M, Wesch D, Mundhenke C. Physical activity influences the immune system of breast cancer patients. J Cancer Res Ther. 2017;13(3):392–8. https://doi.org/10.4103/0973-1482.150356.

    Article  PubMed  Google Scholar 

  28. Barton MB, Keane TJ, Gadalla T, Maki E. The effect of treatment time and treatment interruption on tumour control following radical radiotherapy of laryngeal cancer. Radiother Oncol. 1992;23(3):137–43. https://doi.org/10.1016/0167-8140(92)90323-M.

    Article  CAS  PubMed  Google Scholar 

  29. Fyles A, Keane TJ, Barton M, Simm J. The effect of treatment duration in the local control of cervix cancer. Radiother Oncol. 1992;25(4):273–9. https://doi.org/10.1016/0167-8140(92)90247-R.

  30. Lanciano RM, Pajak TF, Martz K, Hanks GE. The influence of treatment time on outcome for squamous cell cancer of the uterine cervix treated with radiation: a patterns-of-care study. Int J Radiat Oncol Biol Phys. 1993;25(3):391–7. https://doi.org/10.1016/0360-3016(93)90058-4.

  31. Rogers LQ, Anton PM, Fogleman A, Hopkins-Price P, Verhulst S, Rao K, et al. Pilot, randomized trial of resistance exercise during radiation therapy for head and neck cancer. Head Neck. 2013;35(8):1178–88. https://doi.org/10.1002/hed.23118.

    Article  PubMed  Google Scholar 

  32. Grote M, Maihofer C, Weigl M, Davies-Knorr P, Belka C. Progressive resistance training in cachectic head and neck cancer patients undergoing radiotherapy: a randomized controlled pilot feasibility trial. Radiat Oncol. 2018;13(1):215. https://doi.org/10.1186/s13014-018-1157-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lipsett A, Barrett S, Haruna F, Mustian K, O’Donovan A. The impact of exercise during adjuvant radiotherapy for breast cancer on fatigue and quality of life: a systematic review and meta-analysis. Breast. 2017;32:144–55. https://doi.org/10.1016/j.breast.2017.02.002.

    Article  PubMed  Google Scholar 

  34. Segal RJ, Reid RD, Courneya KS, Sigal RJ, Kenny GP, Prud’Homme DG, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51. https://doi.org/10.1200/JCO.2007.15.4963.

    Article  PubMed  Google Scholar 

  35. Truong PT, Gaul CA, McDonald RE, Petersen RB, Jones SO, Alexander AS, et al. Prospective evaluation of a 12-week walking exercise program and its effect on fatigue in prostate cancer patients undergoing radical external beam radiotherapy. Am J Clin Oncol. 2011;34(4):350–5. https://doi.org/10.1097/COC.0b013e3181e841ec.

    Article  PubMed  Google Scholar 

  36. Morielli AR, Usmani N, Boule NG, Severin D, Tankel K, Nijjar T, et al. Exercise during and after neoadjuvant rectal cancer treatment (the EXERT trial): study protocol for a randomized controlled trial. Trials. 2018;19(1):35. https://doi.org/10.1186/s13063-017-2398-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Murphy CC, Bartholomew LK, Carpentier MY, Bluethmann SM, Vernon SW. Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: a systematic review. Breast Cancer Res Treat. 2012;134(2):459–78. https://doi.org/10.1007/s10549-012-2114-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Irwin ML, Cartmel B, Gross CP, Ercolano E, Li F, Yao X, et al. Randomized exercise trial of aromatase inhibitor-induced arthralgia in breast cancer survivors. J Clin Oncol. 2015;33(10):1104–11. https://doi.org/10.1200/jco.2014.57.1547.

    Article  PubMed  Google Scholar 

  39. Horwitz EM, Bae K, Hanks GE, Porter A, Grignon DJ, Brereton HD, et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol. 2008;26(15):2497–504. https://doi.org/10.1200/jco.2007.14.9021.

    Article  CAS  PubMed  Google Scholar 

  40. Bolla M, de Reijke TM, Van Tienhoven G, Van den Bergh ACM, Oddens J, Poortmans PM, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med. 2009;360(24):2516–27. https://doi.org/10.1056/NEJMoa0810095.

  41. Muralidhar V, Regan MM, Werner L, Nakabayashi M, Evan CP, Bellmunt J, et al. Duration of androgen deprivation therapy for high-risk prostate cancer: application of randomized trial data in a tertiary referral cancer center. Clin Genitourin Cancer. 2016;14(4):e299–305. https://doi.org/10.1016/j.clgc.2015.12.008.

    Article  PubMed  Google Scholar 

  42. Sukari A, Nagasaka M, Al-Hadidi A, Lum LG. Cancer immunology and immunotherapy. Anticancer Res. 2016;36(11):5593–606. https://doi.org/10.21873/anticanres.11144.

    Article  CAS  PubMed  Google Scholar 

  43. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

  44. McCullough DJ, Nguyen LM, Siemann DW, Behnke BJ. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. J Appl Physiol (1985). 2013;115(12):1846–54. https://doi.org/10.1152/japplphysiol.00949.2013.

  45. McCullough DJ, Stabley JN, Siemann DW, Behnke BJ. Modulation of blood flow, hypoxia, and vascular function in orthotopic prostate tumors during exercise. J Natl Cancer Inst. 2014;106(4):dju036. https://doi.org/10.1093/jnci/dju036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones LW, Eves ND, Courneya KS, Chiu BK, Baracos VE, Hanson J, et al. Effects of exercise training on antitumor efficacy of doxorubicin in MDA-MB-231 breast cancer xenografts. Clin Cancer Res. 2005;11(18):6695–8. https://doi.org/10.1158/1078-0432.CCR-05-0844.

    Article  CAS  PubMed  Google Scholar 

  47. Sturgeon K, Schadler K, Muthukumaran G, Ding D, Bajulaiye A, Thomas NJ, et al. Concomitant low-dose doxorubicin treatment and exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R685–92. https://doi.org/10.1152/ajpregu.00082.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, et al. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst. 2015;107(5). https://doi.org/10.1093/jnci/djv040.

  49. Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget. 2016;7(40):65429–40. https://doi.org/10.18632/oncotarget.11748.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ashcraft KA, Warner AB, Jones LW, Dewhirst MW. Exercise as adjunct therapy in cancer. Semin Radiat Oncol. 2019;29(1):16–24. https://doi.org/10.1016/j.semradonc.2018.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10–21. https://doi.org/10.1016/j.cmet.2017.09.015.

    Article  CAS  PubMed  Google Scholar 

  52. Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res. 2016;76(14):4032–50. https://doi.org/10.1158/0008-5472.CAN-16-0887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Courneya KS, Sellar CM, Stevinson C, McNeely ML, Peddle CJ, Friedenreich CM, et al. Randomized controlled trial of the effects of aerobic exercise on physical functioning and quality of life in lymphoma patients. J Clin Oncol. 2009;27(27):4605–12. https://doi.org/10.1200/JCO.2008.20.0634.

    Article  PubMed  Google Scholar 

  54. Jones LW, Fels DR, West M, Allen JD, Broadwater G, Barry WT, et al. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res (Phila). 2013;6(9):925–37. https://doi.org/10.1158/1940-6207.CAPR-12-0416.

    Article  CAS  Google Scholar 

  55. Courneya KS, Segal RJ, McKenzie DC, Dong H, Gelmon K, Friedenreich CM, et al. Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med Sci Sports Exerc. 2014;46(9):1744–51. https://doi.org/10.1249/MSS.0000000000000297.

    Article  CAS  PubMed  Google Scholar 

  56. Hayes SC, Steele ML, Spence RR, Gordon L, Battistutta D, Bashford J, et al. Exercise following breast cancer: exploratory survival analyses of two randomised, controlled trials. Breast Cancer Res Treat. 2018;167(2):505–14. https://doi.org/10.1007/s10549-017-4541-9.

    Article  CAS  PubMed  Google Scholar 

  57. Courneya KS, Friedenreich CM, Franco-Villalobos C, Crawford JJ, Chua N, Basi S, et al. Effects of supervised exercise on progression-free survival in lymphoma patients: an exploratory follow-up of the HELP Trial. Cancer Causes Control. 2015;26(2):269–76. https://doi.org/10.1007/s10552-014-0508-x.

    Article  PubMed  Google Scholar 

  58. Eakin EG, Lawler SP, Winkler EA, Hayes SC. A randomized trial of a telephone-delivered exercise intervention for non-urban dwelling women newly diagnosed with breast cancer: exercise for health. Ann Behav Med. 2012;43(2):229–38. https://doi.org/10.1007/s12160-011-9324-7.

    Article  PubMed  Google Scholar 

  59. Hayes S, Rye S, Battistutta D, Yates P, Pyke C, Bashford J, et al. Design and implementation of the Exercise for Health trial – a pragmatic exercise intervention for women with breast cancer. Contemp Clin Trials. 2011;32(4):577–85. https://doi.org/10.1016/j.cct.2011.03.015.

    Article  PubMed  Google Scholar 

  60. Jordan BF, Sonveaux P. Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front Pharmacol. 2012;3:94. https://doi.org/10.3389/fphar.2012.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Semin Radiat Oncol. 2015;25(4):260–72. https://doi.org/10.1016/j.semradonc.2015.05.004.

    Article  PubMed  Google Scholar 

  62. Jones LW, Antonelli J, Masko EM, Broadwater G, Lascola CD, Fels D, et al. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. J Appl Physiol (1985). 2012;113(2):263–72. https://doi.org/10.1152/japplphysiol.01575.2011.

  63. Wiggins JM, Opoku-Acheampong AB, Baumfalk DR, Siemann DW, Behnke BJ. Exercise and the tumor microenvironment: potential therapeutic implications. Exerc Sport Sci Rev. 2018;46(1):56–64. https://doi.org/10.1249/JES.0000000000000137.

    Article  PubMed  Google Scholar 

  64. Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015;54(5):635–54. https://doi.org/10.3109/0284186X.2014.998275.

    Article  PubMed  Google Scholar 

  65. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205–11. https://doi.org/10.1038/nrc2325.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Andria R. Morielli is supported by a Frederick Banting and Charles Best Graduate Scholarship from the Canadian Institutes of Health Research. Kerry S. Courneya is supported by the Canada Research Chairs Program and a Foundation Grant from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry S. Courneya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morielli, A.R., Courneya, K.S. (2020). Effects of Exercise on Cancer Treatment Completion and Efficacy. In: Schmitz, K. (eds) Exercise Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-42011-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42011-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42010-9

  • Online ISBN: 978-3-030-42011-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics