Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 94))

Abstract

In vertebrates, immunoglobulins (Igs), commonly known as antibodies, play an integral role in the armamentarium of immune defense against various pathogens. After an antigenic challenge, antibodies are secreted by differentiated B cells called plasma cells. Antibodies have two predominant roles that involve specific binding to antigens to launch an immune response, along with activation of other components of the immune system to fight pathogens. The ability of immunoglobulins to fight against innumerable and diverse pathogens lies in their intrinsic ability to discriminate between different antigens. Due to this specificity and high affinity for their antigens, antibodies have been a valuable and indispensable tool in research, diagnostics and therapy. Although seemingly a simple maneuver, the association between an antibody and its antigen, to make an antigen–antibody complex, is comprised of myriads of non-covalent interactions. Amino acid residues on the antigen binding site, the epitope, and on the antibody binding site, the paratope, intimately contribute to the energetics needed for the antigen–antibody complex stability. Structural biology methods to study antigen–antibody complexes are extremely valuable tools to visualize antigen–antibody interactions in detail; this helps to elucidate the basis of molecular recognition between an antibody and its specific antigen. The main scope of this chapter is to discuss the structure and function of different classes of antibodies and the various aspects of antigen–antibody interactions including antigen–antibody interfaces—with a special focus on paratopes, complementarity determining regions (CDRs) and other non-CDR residues important for antigen binding and recognition. Herein, we also discuss methods used to study antigen–antibody complexes, antigen recognition by antibodies, types of antigens in complexes, and how antigen–antibody complexes play a role in modern day medicine and human health. Understanding the molecular basis of antigen binding and recognition by antibodies helps to facilitate the production of better and more potent antibodies for immunotherapy, vaccines and various other applications.

Maksymilian Chruszcz—To whom correspondence should be addressed: Maksymilian Chruszcz, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pillai S (2014) Basic immunology: functions and disorders of the immune system. Elsevier Health Sciences

    Google Scholar 

  • Abbott WM, Damschroder MM, Lowe DC (2014) Current approaches to fine mapping of antigen–antibody interactions. Immunology 142(4):526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adachi M, Kurihara Y, Nojima H, Takeda-Shitaka M, Kamiya K, Umeyama H (2003) Interaction between the antigen and antibody is controlled by the constant domains: normal mode dynamics of the HEL–hyHEL-10 complex. Protein Sci 12(10):2125–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad TA, Eweida AE, Sheweita SA (2016) B-cell epitope mapping for the design of vaccines and effective diagnostics. Trials Vaccinol 5:71–83

    Article  Google Scholar 

  • Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273(4):927–948

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berzofsky JA, Schechter AN (1981) The concepts of crossreactivity and specificity in immunology. Mol Immunol 18(8):751–763

    Article  CAS  PubMed  Google Scholar 

  • Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ (1994) Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 91(3):1089–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birtalan S, Zhang Y, Fellouse FA, Shao L, Schaefer G, Sidhu SS (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377(5):1518–1528

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Folea M, Kouřil R (2009) Single particle electron microscopy. Photosynth Res 102(2–3):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37(18):1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Borghesi L, Milcarek C (2006) From B cell to plasma cell. Immunol Res 36(1–3):27–32

    Article  CAS  PubMed  Google Scholar 

  • Bostrom J, Yu S-F, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323(5921):1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Bouvet J-P, Marone G (2007) Protein Fv: an endogenous immunoglobulin superantigen and superallergen. Chem Immunol Allergy 93:58–76. Karger Publishers

    Google Scholar 

  • Bouvet JP, Pires R, Lunel-Fabiani F, Crescenzo-Chaigne B, Maillard P, Valla D, Opolon P, Pillot J (1990) Protein F. A novel F(ab)-binding factor, present in normal liver, and largely released in the digestive tract during hepatitis. J Immunol 145(4):1176–1180

    Google Scholar 

  • Braden BC, Fields BA, Poljak RJ (1995) Conservation of water molecules in an antibody–antigen interaction. J Mol Recognit 8(5):317–325

    Article  CAS  PubMed  Google Scholar 

  • Burton OT, Oettgen HC (2011) Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev 242(1):128–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capra JD, Kehoe JM (1974) Variable region sequences of five human immunoglobulin heavy chains of the VHIII subgroup: definitive identification of four heavy chain hypervariable regions. Proc Natl Acad Sci USA 71(3):845–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casadevall A, Janda A (2012) Immunoglobulin isotype influences affinity and specificity. Proc Natl Acad Sci USA 109(31):12272–12273

    Article  PubMed  PubMed Central  Google Scholar 

  • Cauerhff A, Goldbaum FA, Braden BC (2004) Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci 101(10):3539–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavacini LA, Kuhrt D, Duval M, Mayer K, Posner MR (2003) Binding and neutralization activity of human IgG1 and IgG3 from serum of HIV-infected individuals. AIDS Res Hum Retroviruses 19(9):785–792

    Article  CAS  PubMed  Google Scholar 

  • Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, Harrison SC, Grigorieff N (2009a) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci USA 106(26):10644–10648

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, Edholm E-S, Santini PA, Rath P, Chiu A (2009b) Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol 10(8):889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci USA 96(25):14330–14335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196(4):901–917

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR (1989) Conformations of immunoglobulin hypervariable regions. Nature 342(6252):877

    Article  CAS  PubMed  Google Scholar 

  • Chruszcz M, Wlodawer A, Minor W (2008) Determination of protein structures—a series of fortunate events. Biophys J 95(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chruszcz M, Pomes A, Glesner J, Vailes LD, Osinski T, Porebski PJ, Majorek KA, Heymann PW, Platts-Mills TA, Minor W, Chapman MD (2012) Molecular determinants for antibody binding on group 1 house dust mite allergens. J Biol Chem 287(10):7388–7398

    Article  CAS  PubMed  Google Scholar 

  • Dalkas GA, Teheux F, Kwasigroch JM, Rooman M (2014) Cation–π, amino–π, π–π, and H‐bond interactions stabilize antigen–antibody interfaces. Proteins: Struct Funct Bioinform 82(9):1734–1746

    Google Scholar 

  • Davies DR, Sheriff S, Padlan EA (1988) Antibody-antigen complexes. J Biol Chem 263(22):10541–10544

    CAS  PubMed  Google Scholar 

  • De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J, Wyns L, Muyldermans S (2005) Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J Biol Chem 280(14):14114–14121

    Article  CAS  PubMed  Google Scholar 

  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 103(12):4586–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeKosky BJ, Lungu OI, Park D, Johnson EL, Charab W, Chrysostomou C, Kuroda D, Ellington AD, Ippolito GC, Gray JJ, Georgiou G (2016) Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci 113(19):E2636–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingjan T, Spendlove I, Durrant LG, Scott AM, Yuriev E, Ramsland PA (2015) Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Mol Immunol 67(2):75–88

    Article  CAS  PubMed  Google Scholar 

  • Donnarumma D, Bottomley MJ, Malito E, Settembre E, Ferlenghi I, Cozzi R (2015) Structural biology in vaccine research. In: Advanced vaccine research methods for the decade of vaccines, p 103

    Google Scholar 

  • Durandy A (2003) Mini-review Activation-induced cytidine deaminase: a dual role in class-switch recombination and somatic hypermutation. Eur J Immunol 33(8):2069–2073

    Article  CAS  PubMed  Google Scholar 

  • Elek S, Smith BK, Highman W (1964) The interaction of antigen and antibody in agglutination: a study by electron microscopy. Immunology 7(5):570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fanning SW, Horn JR (2011) An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop. Protein Sci 20(7):1196–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JD (2011) Clarifying the mechanism of superantigen toxicity. PLoS Biol 9(9):e1001145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman CL, Sehn L (2018) Anti-CD20 directed therapy of B cell lymphomas: are new agents really better? Curr Oncol Rep 20(12):103

    Article  PubMed  Google Scholar 

  • Gala FA, Morrison SL (2002) The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J Biol Chem 277(32):29005–29011

    Article  CAS  PubMed  Google Scholar 

  • Geisberger R, Lamers M, Achatz G (2006) The riddle of the dual expression of IgM and IgD. Immunology 118(4):429–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glesner J, Vailes LD, Schlachter C, Mank N, Minor W, Osinski T, Chruszcz M, Chapman MD, Pomes A (2017) Antigenic determinants of Der p 1: specificity and cross-reactivity associated with IgE antibody recognition. J Immunol 198(3):1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Glesner J, Kapingidza AB, Godzwon M, Offermann LR, Mueller GA, DeRose EF, Wright P, Richardson CM, Woodfolk JA, Vailes LD, Wünschmann S, London RE, Chapman MD, Ohlin M, Chruszcz M, Pomés A (2019) Human IgE antibody binding site on Der p 2 for the design of a recombinant allergen for immunotherapy. J Immunol 203(9):2545–2556

    Google Scholar 

  • Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet J-P, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367(6459):183

    Article  CAS  PubMed  Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, Mckinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173

    Article  CAS  PubMed  Google Scholar 

  • Grönwall C, Vas J, Silverman GJ (2012) Protective roles of natural IgM antibodies. Front Immunol 3:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruber K, Zhou B, Houk KN, Lerner RA, Shevlin CG, Wilson IA (1999) Structural basis for antibody catalysis of a disfavored ring closure reaction. Biochemistry 38(22):7062–7074

    Article  CAS  PubMed  Google Scholar 

  • Haidar JN, Yuan QA, Zeng L, Snavely M, Luna X, Zhang H, Zhu W, Ludwig DL, Zhu Z (2012) A universal combinatorial design of antibody framework to graft distinct cdr sequences: a bioinformatics approach. Proteins: Struct Funct Bioinform 80(3):896–912

    Google Scholar 

  • Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV (2015) Antibody recognition of carbohydrate epitopes. Glycobiology 25(9):920–952

    Article  CAS  PubMed  Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448

    Article  CAS  PubMed  Google Scholar 

  • Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, de Geus B (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37(10):579–590

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Larson SB, Hasel KW, McPherson A (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36(7):1581–1597

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Skaletsky E, McPherson A (1998) Crystallographic structure of an intact IgG1 monoclonal antibody. J Mol Biol 275(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Henry KA, MacKenzie CR (2018) Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs 10(6):815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewat EA, Verdaguer N, Fita I, Blakemore W, Brookes S, King A, Newman J, Domingo E, Mateu MG, Stuart DI (1997) Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J 16(7):1492–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber R (1980) Spatial structure of immunoglobulin molecules. Klin Wochenschr 58(22):1217–1231

    Article  CAS  PubMed  Google Scholar 

  • Jahnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, Bosch L, De Vrieze S, Serruys B, Ulrichts H, Vandevelde W, Saunders M, De Haard HJ, Schols D, Leurs R, Vanlandschoot P, Verrips T, Smit MJ (2010) CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci 107(47):20565–20570

    Article  PubMed  PubMed Central  Google Scholar 

  • Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) The structure of a typical antibody molecule. In: Immunobiology: the immune system in health and disease, 5th edn. Garland Science

    Google Scholar 

  • Jeffrey PD, Bajorath J, Chang CY, Yelton D, Hellström I, Hellström KE, Sheriff S (1995) The X-ray structure of an anti-tumour antibody in complex with antigen. Nat Struct Biol 2(6):466

    Article  CAS  PubMed  Google Scholar 

  • Jolles S, Sewell WA, Misbah SA (2005) Clinical uses of intravenous immunoglobulin. Clin Exp Immunol 142(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karp CL (2010) Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol 125(5):955–960

    Article  PubMed  PubMed Central  Google Scholar 

  • Keskin O (2007) Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Struct Biol 7(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM (1991) Humanization of a mouse monoclonal antibody by CDR–grafting: the importance of framework residues on loop conformation. Protein Eng Des Sel 4(7):773–783

    Article  CAS  Google Scholar 

  • Khan T, Salunke DM (2014) Adjustable locks and flexible keys: plasticity of epitope–paratope interactions in germline antibodies. J Immunol 192(11):5398–5405

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV (2019) Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 26(3):396–426

    Article  CAS  PubMed  Google Scholar 

  • King MT, Brooks CL (2018) Epitope mapping of antibody-antigen interactions with x-ray crystallography. In: Epitope Mapping Protocols. Springer, Switzerland, pp 13–27

    Google Scholar 

  • Kringelum JV, Nielsen M, Padkjær SB, Lund O (2013) Structural analysis of B-cell epitopes in antibody: protein complexes. Mol Immunol 53(1–2):24–34

    Article  CAS  PubMed  Google Scholar 

  • Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26(10):599–609

    Article  CAS  PubMed  Google Scholar 

  • LeBrasseur N (2003) A view of antibody maturation. J Cell Biol 161(5):834

    PubMed Central  Google Scholar 

  • Leder P (1982) The genetics of antibody diversity. Sci Am 246(5):102–115

    Article  CAS  PubMed  Google Scholar 

  • Lescar J, Pellegrini M, Souchon H, Tello D, Poljak RJ, Peterson N, Greene M, Alzari PM (1995) Crystal-structure of a cross-reaction complex between Fab F9.13.7 and guinea-fowl lysozyme. J Biol Chem 270(30):18067–18076.

    Google Scholar 

  • Li Y, Lipschultz CA, Mohan S, Smith-Gill SJ (2001) Mutations of an epitope hot-spot residue alter rate limiting steps of antigen−antibody protein−protein associations. Biochemistry 40(7):2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li H, Yang F, Smith-Gill SJ, Mariuzza RA (2003) X-ray snapshots of the maturation of an antibody response to a protein antigen. Nat Struct Biol 10(6):482–488

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Guttman M, Davenport TM, Hu S-L, Lee KK (2016) Probing the impact of local structural dynamics of conformational epitopes on antibody recognition. Biochemistry 55(15):2197–2213

    Article  CAS  PubMed  Google Scholar 

  • Liao HX, Alam SM, Mascola JR, Robinson J, Ma BJ, Montefiori DC, Rhein M, Sutherland LL, Scearce R, Haynes BF (2004) Immunogenicity of constrained monoclonal antibody A32-human immunodeficiency virus (HIV) env gp120 complexes compared to that of recombinant HIV type 1 gp120 envelope glycoproteins. J Virol 78(10):5270–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig DL, Pereira DS, Zhu Z, Hicklin DJ, Bohlen P (2003) Monoclonal antibody therapeutics and apoptosis. Oncogene 22(56):9097–9106

    Article  CAS  PubMed  Google Scholar 

  • MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 262(5):732–745

    Article  CAS  PubMed  Google Scholar 

  • MacRaild CA, Richards JS, Anders RF, Norton RS (2016) Antibody recognition of disordered antigens. Structure 24(1):148–157

    Article  CAS  PubMed  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatooid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237

    Article  CAS  PubMed  Google Scholar 

  • Mari A, Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G, Pini C (1999) Specific IgE to cross-reactive carbohydrate determinants strongly affect the in vitro diagnosis of allergic diseases. J Allergy Clin Immunol 103(6):1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Mariuzza RA, PoIjak RJ (1993) The basics of binding: mechanisms of antigen recognition and mimicry by antibodies. Curr Opin Immunol 5(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Market E, Papavasiliou FN (2003) V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol 1(1):e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marone G (2007) Superantigens and superallergens, vol 93. Karger Medical and Scientific Publishers, Basel

    Google Scholar 

  • Marone G, Spadaro G, Liccardo B, Rossi FW, D'Orio C, Detoraki A (2006) Superallergens: a new mechanism of immunologic activation of human basophils and mast cells. Inflamm Res 55(Suppl 1):S25–27

    Article  CAS  PubMed  Google Scholar 

  • Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13

    Article  CAS  PubMed  Google Scholar 

  • Meulenbroek LA, de Jong RJ, den Hartog Jager CF, Monsuur HN, Wouters D, Nauta AJ, Knippels LM, van Neerven RJ, Ruiter B, Leusen JH (2013) IgG antibodies in food allergy influence allergen–antibody complex formation and binding to B cells: a role for complement receptors. J Immunol 191(7):3526–3533

    Article  CAS  PubMed  Google Scholar 

  • Mimura Y, Church S, Ghirlando R, Ashton P, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37(12–13):697–706

    Article  CAS  PubMed  Google Scholar 

  • Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in FcγRIIb binding. J Biol Chem 276(49):45539–45547

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LS, Colwell LJ (2018) Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel 31(7–8):267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitropoulou AN, Bowen H, Dodev TS, Davies AM, Bax HJ, Beavil RL, Beavil AJ, Gould HJ, James LK, Sutton BJ (2018) Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proc Natl Acad Sci 115(37):E8707–E8716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moalli F, Doni A, Deban L, Zelante T, Zagarella S, Bottazzi B, Romani L, Mantovani A, Garlanda C (2010) Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against aspergillus fumigatus. Blood 116(24):5170–5180

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7(9):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Narayanan A, Sellers BD, Jacobson MP (2009) Energy-based analysis and prediction of the orientation between light- and heavy-chain antibody variable domains. J Mol Biol 388(5):941–953

    Article  CAS  PubMed  Google Scholar 

  • Nelson AL Antibody fragments: hope and hype. In: MAbs, 2010. vol 1. Taylor & Francis, pp 77–83

    Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    Article  CAS  PubMed  Google Scholar 

  • North B, Lehmann A, Dunbrack RL Jr (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256

    Article  CAS  PubMed  Google Scholar 

  • Oettgen HC, Geha RS (1999) IgE in asthma and atopy: cellular and molecular connections. J Clin Invest 104(7):829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31(3):169–217

    Article  CAS  PubMed  Google Scholar 

  • Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci 86(15):5938–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padlan EA, Abergel C, Tipper J (1995) Identification of specificity-determining residues in antibodies. FASEB J. 9(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Pan R, Chen Y, Vaine M, Hu G, Wang S, Lu S, Kong XP (2015) Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerg Microbes Infect 4(7):e44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11(1):331–360

    Article  CAS  PubMed  Google Scholar 

  • Peng H-P, Lee KH, Jian J-W, Yang A-S (2014) Origins of specificity and affinity in antibody–protein interactions. Proc Natl Acad Sci USA 111(26):E2656–E2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platts-Mills TA (2001) The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med 164 (supplement_1):S1-S5

    Google Scholar 

  • Pollara J, Tay MZ (2019) Antibody-dependent cellular phagocytosis in antiviral immune responses. Front Immunol 10:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons J, Stratton JR, Kirsch JF (2002) How do two unrelated antibodies, HyHEL‐10 and F9. 13.7, recognize the same epitope of hen egg‐white lysozyme? Protein Sci 11(10):2308–2315

    Google Scholar 

  • Potocnakova L, Bhide M, Pulzova LB (2016) An introduction to B-cell epitope mapping and in silico epitope prediction. J Immunol Res 2016:6760830

    Google Scholar 

  • Presta L, Shields R, O'Connell L, Lahr S, Porter J, Gorman C, Jardieu P (1994) The binding site on human immunoglobulin E for its high affinity receptor. J Biol Chem 269(42):26368–26373

    CAS  PubMed  Google Scholar 

  • Rafiq K, Bergtold A, Clynes R (2002) Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 110(1):71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghunathan G, Smart J, Williams J, Almagro JC (2012) Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J Mol Recognit 25(3):103–113

    Article  CAS  PubMed  Google Scholar 

  • Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P (2014) Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody–antigen complexes. J Mol Biol 426(22):3729–3743

    Article  CAS  PubMed  Google Scholar 

  • Rosen O, Anglister J (2009) Epitope mapping of antibody–antigen complexes by nuclear magnetic resonance spectroscopy. In: Epitope mapping protocols. Springer, Switzerland, pp 37–57

    Google Scholar 

  • Rouet R, Dudgeon K, Christie M, Langley D, Christ D (2015) Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem 290(19):11905–11917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, Dwek RA, Stanfield RL, Burton DR, Wilson IA (2001) Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293(5532):1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2):S41–S52

    Article  PubMed  PubMed Central  Google Scholar 

  • Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheriff S, Silverton EW, Padlan EA, Cohen GH, Smith-Gill SJ, Finzel BC, Davies DR (1987) Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci USA 84(22):8075–8079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonelli L, Pedotti M, Bardelli M, Jurt S, Zerbe O, Varani L (2018) Mapping antibody epitopes by solution NMR spectroscopy: practical considerations. In: Epitope mapping protocols. Springer, Switzerland, pp 29–51

    Google Scholar 

  • Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and function. Curr Protein Pept Sci 3(6):601–614

    Article  CAS  PubMed  Google Scholar 

  • Sinha N, Mohan S, Lipschultz CA, Smith-Gill SJ (2002) Differences in electrostatic properties at antibody-antigen binding sites: Implications for specificity and cross-reactivity. Biophys J 83(6):2946–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skiniotis G, Southworth DR (2016) Single-particle cryo-electron microscopy of macromolecular complexes. Microscopy 65(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Spiegelberg HL (1989) Biological role of different antibody classes. Int Arch Allergy Immunol 90(Suppl. 1):22–27

    Article  CAS  Google Scholar 

  • Spuergin P, Mueller H, Walter M, Schiltz E, Forster J (1996) Allergenic epitopes of bovine αs1-casein recognized by human IgE and IiG. Allergy 51(5):306–312

    CAS  PubMed  Google Scholar 

  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305(5691):1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA (2006a) Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J Virol 80(12):6093–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanfield RL, Zemla A, Wilson IA, Rupp B (2006b) Antibody elbow angles are influenced by their light chain class. J Mol Biol 357(5):1566–1574

    Article  CAS  PubMed  Google Scholar 

  • Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R (2015) Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 25(4):412–419

    Article  CAS  PubMed  Google Scholar 

  • Stavnezer J, Amemiya CT (2004) Evolution of isotype switching. In: Seminars in immunology, vol 4. Elsevier, Amsterdam, pp 257–275

    Google Scholar 

  • Strohl W, Strohl L (2013) Antibody fragments as therapeutics. Therap Anti Eng: Curr Fut Adv Driv Strong Growth Area Pharm Ind 265–299

    Google Scholar 

  • Theofilopoulos AN, Dixon FJ (1980) Immune complexes in human diseases: a review. Am J Pathol 100(2):529–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Vestergaard B, Thorolfsson M, Yang Z, Rasmussen HB, Langkilde AE (2015) In-depth analysis of subclass-specific conformational preferences of IgG antibodies. IUCrJ 2(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres M, Casadevall A (2008) The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 29(2):91–97

    Article  CAS  PubMed  Google Scholar 

  • Townsend CL, Laffy JM, Wu Y-CB, Silva O’Hare J, Martin V, Kipling D, Fraternali F, Dunn-Walters DK (2016) Significant differences in physicochemical properties of human immunoglobulin kappa and lambda CDR3 regions. Front Immunol 7:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tudor D, Yu H, Maupetit J, Drillet A-S, Bouceba T, Schwartz-Cornil I, Lopalco L, Tuffery P, Bomsel M (2012) Isotype modulates epitope specificity, affinity, and antiviral activities of anti–HIV-1 human broadly neutralizing 2F5 antibody. Proc Natl Acad Sci USA 109(31):12680–12685

    Article  PubMed  PubMed Central  Google Scholar 

  • Underdown BJ, Schiff JM (1986) Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu Rev Immunol 4(1):389–417

    Article  CAS  PubMed  Google Scholar 

  • Van Kaer L (2018) How superantigens bind MHC. J Immunol 201(7):1817–1818

    Article  CAS  PubMed  Google Scholar 

  • Van Regenmortel MH (2009) What is a B-cell epitope? In: Epitope mapping protocols. Springer, Switzerland, pp 3–20

    Google Scholar 

  • Van Regenmortel MH (2014) Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit 27(11):627–639

    Article  CAS  PubMed  Google Scholar 

  • Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visciano ML, Tuen M, Gorny MK, Hioe CE (2008) In vivo alteration of humoral responses to HIV-1 envelope glycoprotein gp120 by antibodies to the CD4-binding site of gp120. Virology 372(2):409–420

    Article  CAS  PubMed  Google Scholar 

  • Webster DM, Henry AH, Rees AR (1994) Antibody-antigen interactions. Curr Opin Struct Biol 4(1):123–129

    Article  CAS  Google Scholar 

  • Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC (1997) Structural insights into the evolution of an antibody combining site. Science 276(5319):1665–1669

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, Iacob RE, Engen JR (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Weitzner BD, Dunbrack RL Jr, Gray JJ (2015) The origin of CDR H3 structural diversity. Structure 23(2):302–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen YM, Mu L, Shi Y (2016) Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 8(10):1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wider G, Wüthrich K (1999) NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr Opin Struct Biol 9(5):594–601

    Article  CAS  PubMed  Google Scholar 

  • Williams CM, Galli SJ (2000) The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 105(5):847–859

    Article  CAS  PubMed  Google Scholar 

  • Wilson IA, Stanfield RL (1994) Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol 4(6):857–867

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Wood P (2012) Human normal immunoglobulin in the treatment of primary immunodeficiency diseases. Ther Clin Risk Manag 8:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL (2012) Fabs enable single particle cryoEM studies of small proteins. Structure 20(4):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Pawar RD, Nakouzi AS, Herlitz L, Broder A, Liu K, Goilav B, Fan M, Wang L, Li Q-Z (2012) The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J Autoimmun 39(4):398–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang J, Sha Y, Jia Z, Prasad L, Delbaere LT (1995) Framework residues 71 and 93 of the chimeric B72. 3 antibody are major determinants of the conformation of heavy-chain hypervariable loops. Elsevier

    Google Scholar 

  • Xiang J, Prasad L, Delbaere LT, Jia Z (1999) Light-chain framework region residue Tyr71 of chimeric B72. 3 antibody plays an important role in influencing the TAG72 antigen binding. Protein Eng 12(5):417–421

    Google Scholar 

  • Zhao L, Li J (2010) Mining for the antibody-antigen interacting associations that predict the B cell epitopes. BMC Struct Biol 10(1):S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XY, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA (2006) Complete reaction cycle of a cocaine catalytic antibody at atomic resolution. Structure 14(2):205–216

    Article  CAS  PubMed  Google Scholar 

  • Zuiderweg ER (2002) Mapping protein−protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tapiwa Pekoyo for insightful comments and discussions. This work was supported by grant R01AI077653 from National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksymilian Chruszcz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapingidza, A.B., Kowal, K., Chruszcz, M. (2020). Antigen–Antibody Complexes. In: Hoeger, U., Harris, J. (eds) Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Biochemistry, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-030-41769-7_19

Download citation

Publish with us

Policies and ethics