Skip to main content

Diagnosis and Evaluation of Pancreatic and Periampullary Adenocarcinoma

  • Reference work entry
  • First Online:
Hepato-Pancreato-Biliary Malignancies
  • 654 Accesses

Abstract

Due to the serious nature of the disease, both pancreatic and periampullary cancers warrant heightened radiographic suspicion when signs and symptoms point to the disease. However, because the two diseases have separate biologies and significant differences in prognosis (in general, stage for stage, patients with ampullary cancers demonstrate longer survival rates compared with pancreatic cancers), it is incumbent upon the physician to make a timely, accurate diagnosis. Therefore, the objectives of this chapter are several fold. First, it aims to summarize the symptoms and risk factors of each disease, including a review of hereditary cancer syndromes. Next, it guides the reader into selecting the optimal diagnostic modality for each disease. Additionally, comparative effectiveness data comparing various types of biopsy modalities is presented. Finally, data on performance of staging CT/MRI/EUS is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society Cancer Facts and Figures 2020. Atlanta: American Cancer Society; 2020

    Google Scholar 

  2. Siegel RMK, Jemal A. Cancer statistics, 2020. CA Cancer J Lin. 2020;70(1):7–30.

    Google Scholar 

  3. Yamao KTM, Nakai A, et al. Detection of high-grade pancreatic intraepithelial neoplasia without morphological changes of the main pancreatic duct over a long period: importance of close follow-up for confirmation. Oncology. 2017;93:81–6.

    Google Scholar 

  4. Classification of Pancreatic Carcinoma. Fourth English Edition. 4th ed. Tokyo, Japan: Kanehara & Co, Ltd; 2017.

    Google Scholar 

  5. Benhamiche AMJJ, Manfredi S, et al. Cancer of the ampulla of Vater: results of a 20-year population-based study. Eur J Gastroenterol Hepatol. 2000;12(1):75–9.

    CAS  Google Scholar 

  6. Porta M, Fabregat X, Malats N, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol. 2005;7(5):189–97.

    Google Scholar 

  7. Galvan VG. Sister Mary Joseph's nodule. Ann Intern Med. 1998;128(5):410.

    CAS  Google Scholar 

  8. Sadr-Azodi O, Oskarsson V, Discacciati A, Videhult P, Askling J, Ekbom A. Pancreatic cancer following acute pancreatitis: a population-based matched cohort study. Am J Gastroenterol. 2018;113(11):1711–9.

    Google Scholar 

  9. Koulouris AI, Banim P, Hart AR. Pain in patients with pancreatic cancer: prevalence, mechanisms, management and future developments. Dig Dis Sci. 2017;62(4):861–70.

    CAS  Google Scholar 

  10. Fearon KC, Voss AC, Hustead DS, Cancer Cachexia Study G. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr. 2006;83(6):1345–50.

    CAS  Google Scholar 

  11. Uomo G, Gallucci F, Rabitti PG. Anorexia-cachexia syndrome in pancreatic cancer: recent development in research and management. JOP. 2006;7(2):157–62.

    Google Scholar 

  12. Sharma A, Kandlakunta H, Nagpal SJS, et al. Model to determine risk of pancreatic cancer in patients with new-onset diabetes. Gastroenterology. 2018;155(3):730–9e3.

    Google Scholar 

  13. Tan CR, Yaffee PM, Jamil LH, et al. Pancreatic cancer cachexia: a review of mechanisms and therapeutics. Front Physiol. 2014;5:88.

    Google Scholar 

  14. Danai LV, Babic A, Rosenthal MH, et al. Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature. 2018;558(7711):600–4.

    CAS  Google Scholar 

  15. Ewald N, Kaufmann C, Raspe A, Kloer HU, Bretzel RG, Hardt PD. Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes Metab Res Rev. 2012;28(4):338–42.

    CAS  Google Scholar 

  16. Hart PA, Bellin MD, Andersen DK, et al. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol. 2016;1(3):226–37.

    Google Scholar 

  17. Monson JR, Donohue JH, McEntee GP, et al. Radical resection for carcinoma of the ampulla of Vater. Arch Surg. 1991;126(3):353–7.

    CAS  Google Scholar 

  18. Zheng-Pywell R, Reddy S. Ampullary cancer. Surg Clin N Am. 2019;99(2):357–67.

    Google Scholar 

  19. Chari ST, Kelly K, Hollingsworth MA, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693–712.

    Google Scholar 

  20. Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17.

    CAS  Google Scholar 

  21. Terhune PGPD, Tosteson TD, et al. K-ras mutation in focal proliferative lesions of the human pancreas. Cancer Epidemiol Biomarkers Prev. 1998;7:515–21.

    CAS  Google Scholar 

  22. Kanda MMH, Wu J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142(4):730–3.

    CAS  Google Scholar 

  23. Andea ASF, Adsay VN. Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol. 2003;16(10):996–1006.

    Google Scholar 

  24. Chari ST. Detecting early pancreatic cancer – problems and prospects. Semin Oncol. 2007;34(4):284–94.

    CAS  Google Scholar 

  25. Alsamarrai A, Das SL, Windsor JA, Petrov MS. Factors that affect risk for pancreatic disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Clin Gastroenterol Hepatol. 2014;12(10):1635–44 e5. quiz e103

    Google Scholar 

  26. Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg. 2008;393(4):535–45.

    Google Scholar 

  27. Korc M, Jeon CY, Edderkaoui M, et al. Tobacco and alcohol as risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol. 2017;31(5):529–36.

    Google Scholar 

  28. Jiao L, Silverman DT, Schairer C, et al. Alcohol use and risk of pancreatic cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol. 2009;169(9):1043–51.

    Google Scholar 

  29. Anderson KE, Sinha R, Kulldorff M, et al. Meat intake and cooking techniques: associations with pancreatic cancer. Mutat Res. 2002;506-507:225–31.

    CAS  Google Scholar 

  30. Lyon JL, Slattery ML, Mahoney AW, Robison LM. Dietary intake as a risk factor for cancer of the exocrine pancreas. Cancer Epidemiol Biomark Prev. 1993;2(6):513–8.

    CAS  Google Scholar 

  31. Taunk P, Hecht E, Stolzenberg-Solomon R. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH-AARP diet and health cohort. Int J Cancer. 2016;138(9):2172–89.

    CAS  Google Scholar 

  32. Mills PK, Beeson WL, Abbey DE, Fraser GE, Phillips RL. Dietary habits and past medical history as related to fatal pancreas cancer risk among Adventists. Cancer. 1988;61(12):2578–85.

    CAS  Google Scholar 

  33. Gold EB, Gordis L, Diener MD, et al. Diet and other risk factors for cancer of the pancreas. Cancer. 1985;55(2):460–7.

    CAS  Google Scholar 

  34. Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog. 2012;51(1):53–63.

    CAS  Google Scholar 

  35. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and pancreatic cancer. Available at: dietandcancerreport.org

  36. Ben Q, Xu M, Ning X, et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47(13):1928–37.

    Google Scholar 

  37. Andersen DK, Korc M, Petersen GM, et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes. 2017;66(5):1103–10.

    CAS  Google Scholar 

  38. Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24(3):349–58.

    Google Scholar 

  39. Kirkegard J, Mortensen FV, Cronin-Fenton D. Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol. 2017;112(9):1366–72.

    Google Scholar 

  40. Tenner S, Baillie J, DeWitt J, Vege SS. American college of gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol. 2013;108(9):1400–15.

    CAS  Google Scholar 

  41. Stoffel EM, McKernin SE, Khorana AA. Evaluating susceptibility to pancreatic cancer: ASCO clinical practice provisional clinical opinion summary. J Oncol Pract. 2019;15(2):108–11.

    Google Scholar 

  42. Klein AP, Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.

    CAS  Google Scholar 

  43. Raphael KL, Willingham FF. Hereditary pancreatitis: current perspectives. Clin Exp Gastroenterol. 2016;9:197–207.

    CAS  Google Scholar 

  44. Lowenfels AB, Maisonneuve P, DiMagno EP, et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst. 1997;89(6):442–6.

    CAS  Google Scholar 

  45. Lowenfels AB, Maisonneuve P, Whitcomb DC, Lerch MM, DiMagno EP. Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA. 2001;286(2):169–70.

    CAS  Google Scholar 

  46. Gruber SB, Entius MM, Petersen GM, et al. Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res. 1998;58(23):5267–70.

    CAS  Google Scholar 

  47. Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53.

    CAS  Google Scholar 

  48. Haluska FG, Hodi FS. Molecular genetics of familial cutaneous melanoma. J Clin Oncol. 1998;16(2):670–82.

    CAS  Google Scholar 

  49. Lynch HT, Fusaro RM, Lynch JF, Brand R. Pancreatic cancer and the FAMMM syndrome. Fam Cancer. 2008;7(1):103–12.

    CAS  Google Scholar 

  50. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78.

    Google Scholar 

  51. Slater EP, Langer P, Niemczyk E, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010;78(5):490–4.

    CAS  Google Scholar 

  52. Lal G, Liu G, Schmocker B, et al. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res. 2000;60(2):409–16.

    CAS  Google Scholar 

  53. Geary J, Sasieni P, Houlston R, et al. Gene-related cancer spectrum in families with hereditary non-polyposis colorectal cancer (HNPCC). Fam Cancer. 2008;7(2):163–72.

    CAS  Google Scholar 

  54. Kastrinos F, Mukherjee B, Tayob N, et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA. 2009;302(16):1790–5.

    CAS  Google Scholar 

  55. Pauli RMPM, Hall JG. Gardner syndrome and periampullary malignancy. Am J Med Genet. 1980;6(3):205–19.

    CAS  Google Scholar 

  56. Jagelman DGDJ, Bussey HJR, et al. Upper gastrointestinal cancer in familial adenomatous polyposis. Lancet. 1988;331(8595):1149–51.

    Google Scholar 

  57. Morris-Stiff GAE, Tan YM, et al. Assessment of survival advantage in ampullary carcinoma in relation to tumour biology and morphology. Eur J Surg Oncol. 2009;35(7):746–50.

    CAS  Google Scholar 

  58. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Google Scholar 

  59. Shin EJ, Canto MI. Pancreatic cancer screening. Gastroenterol Clin N Am. 2012;41(1):143–57.

    Google Scholar 

  60. Canto MI, Harinck F, Hruban RH, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2013;62(3):339–47.

    Google Scholar 

  61. Canto MI, Almario JA, Schulick RD, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology. 2018;155(3):740–51 e2.

    Google Scholar 

  62. Vasen H, Ibrahim I, Ponce CG, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European Expert Centers. J Clin Oncol. 2016;34(17):2010–9.

    CAS  Google Scholar 

  63. Jagelman DG, DeCosse JJ, Bussey HJ. Upper gastrointestinal cancer in familial adenomatous polyposis. Lancet. 1988;1(8595):1149–51.

    CAS  Google Scholar 

  64. Latchford AR, Neale KF, Spigelman AD, Phillips RK, Clark SK. Features of duodenal cancer in patients with familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2009;7(6):659–63.

    Google Scholar 

  65. Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62. quiz 63

    Google Scholar 

  66. DiMagno EP, Malagelada JR, Taylor WF, Go VL. A prospective comparison of current diagnostic tests for pancreatic cancer. N Engl J Med. 1977;297(14):737–42.

    CAS  Google Scholar 

  67. Pezzilli R, Ventrucci M, Talarico R, Naldoni P, Cassano A, Gullo L. Serum pancreatic enzymes in the diagnosis of carcinoma of the pancreas. G Ital Oncol. 1989;9(1):7–13.

    CAS  Google Scholar 

  68. Loser C, Mollgaard A, Folsch UR. Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996;39(4):580–6.

    CAS  Google Scholar 

  69. Bo-Linn GW, Fordtran JS. Fecal fat concentration in patients with steatorrhea. Gastroenterology. 1984;87(2):319–22.

    CAS  Google Scholar 

  70. Harsha HC, Kandasamy K, Ranganathan P, et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med. 2009;6(4):e1000046.

    CAS  Google Scholar 

  71. Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol. 2007;33(3):266–70.

    CAS  Google Scholar 

  72. Ballehaninna UK, Chamberlain RS. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J Gastrointest Oncol. 2012;3(2):105–19.

    CAS  Google Scholar 

  73. Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K. Diagnosis of pancreatic cancer. HPB (Oxford). 2006;8(5):337–42.

    Google Scholar 

  74. Skordilis P, Mouzas IA, Dimoulios PD, Alexandrakis G, Moschandrea J, Kouroumalis E. Is endosonography an effective method for detection and local staging of the ampullary carcinoma? A prospective study. BMC Surg. 2002;2:1.

    Google Scholar 

  75. Shrikhande SV, Barreto SG, Goel M, Arya S. Multimodality imaging of pancreatic ductal adenocarcinoma: a review of the literature. HPB (Oxford). 2012;14(10):658–68.

    Google Scholar 

  76. DeWitt JDB, Chriswell M, et al. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med. 2004;141:753–63.

    Google Scholar 

  77. Imbriaco M, Megibow AJ, Ragozzino A, et al. Value of the single-phase technique in MDCT assessment of pancreatic tumors. Am J Roentgenol. 2005;184(4):1111–7.

    Google Scholar 

  78. Kim JH, Kim MJ, Chung JJ, Lee WJ, Yoo HS, Lee JT. Differential diagnosis of periampullary carcinomas at MR imaging. Radiographics. 2002;22(6):1335–52.

    Google Scholar 

  79. Bakkevold KE, Arnesjo B, Kambestad B. Carcinoma of the pancreas and papilla of Vater: presenting symptoms, signs, and diagnosis related to stage and tumour site. A prospective multicentre trial in 472 patients. Norwegian Pancreatic Cancer Trial. Scand J Gastroenterol. 1992;27(4):317–25.

    CAS  Google Scholar 

  80. Chang S, Lim JH, Choi D, Kim SK, Lee WJ. Differentiation of ampullary tumor from benign papillary stricture by thin-section multidetector CT. Abdom Imaging. 2008;33(4):457–62.

    Google Scholar 

  81. Takakura K, Sumiyama K, Munakata K, et al. Clinical usefulness of diffusion-weighted MR imaging for detection of pancreatic cancer: comparison with enhanced multidetector-row CT. Abdom Imaging. 2011;36(4):457–62.

    Google Scholar 

  82. Tummala P, Junaidi O, Agarwal B. Imaging of pancreatic cancer: an overview. J Gastrointest Oncol. 2011;2(3):168–74.

    Google Scholar 

  83. Chen WX, Xie QG, Zhang WF, et al. Multiple imaging techniques in the diagnosis of ampullary carcinoma. Hepatobiliary Pancreat Dis Int. 2008;7(6):649–53.

    Google Scholar 

  84. Kim MJ, Mitchell DG, Ito K, Outwater EK. Biliary dilatation: differentiation of benign from malignant causes – value of adding conventional MR imaging to MR cholangiopancreatography. Radiology. 2000;214(1):173–81.

    CAS  Google Scholar 

  85. Wang Z, Chen JQ, Liu JL, Qin XG, Huang Y. FDG-PET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis. World J Gastroenterol. 2013;19(29):4808–17.

    Google Scholar 

  86. Sauvanet A, Chapuis O, Hammel P, et al. Are endoscopic procedures able to predict the benignity of ampullary tumors? Am J Surg. 1997;174(3):355–8.

    CAS  Google Scholar 

  87. Adamek HE, Albert J, Breer H, Weitz M, Schilling D, Riemann JF. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: a prospective controlled study. Lancet. 2000;356(9225):190–3.

    CAS  Google Scholar 

  88. DiMagno EPBJ, Regan PT, et al. Ultrasonic endoscope. Lancet. 1980;315(8169):629–31.

    Google Scholar 

  89. Vilmann PJG, Henriksen FW, et al. Endoscopic ultrasonography with guided fine needle aspiration biopsy in pancreatic disease. Gastrointest Endosc. 1992;38(2):172–3.

    CAS  Google Scholar 

  90. Saftoiu AVP. Role of endoscopic ultrasound in the diagnosis and staging of pancreatic cancer. J Clin Ultrasound. 2009;37(1):1–17.

    Google Scholar 

  91. Canto MIGM, Hruban RH, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol. 2006;4:766–81.

    Google Scholar 

  92. Canto MIHR, Fishman EK, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142:796–804.

    Google Scholar 

  93. Xu WSJ, Li X, et al. Endoscopic ultrasound elastography for differentiation of benign and malignant pancreatic masses: a systemic review and meta-analysis. Eur J Gastroenterol Hepatol. 2013;25(2):218–24.

    Google Scholar 

  94. Mei MNJ, Jin P, et al. EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. Gastrointest Endosc. 2013;77(4):578–89.

    Google Scholar 

  95. Hocke MSE, Gottschalk P, et al. Contrast-enhanced endoscopic ultrasound in discrimination between focal pancreatitis and pancreatic cancer. World J Gastroenterol. 2006;12(2):246–50.

    Google Scholar 

  96. Yamashita YST, Napoleon B, et al. Value of contrast-enhanced harmonic endoscopic ultrasonography with enhancement pattern for diagnosis of pancreatic cancer: a meta-analysis. Dig Endosc. 2019;31(2):125–33.

    Google Scholar 

  97. Gong TTHD, Zhu Q. Contrast-enhanced EUS for differential diagnosis of pancreatic mass lesions: a meta-analysis. Gastrointest Endosc. 2012;76:301–9.

    Google Scholar 

  98. Asbun HJ, Conlon K, Fernandez-Cruz L, et al. When to perform a pancreatoduodenectomy in the absence of positive histology? A consensus statement by the International Study Group of Pancreatic Surgery. Surgery. 2014;155(5):887–92.

    Google Scholar 

  99. Fritscher-Ravens A, Brand L, Knofel WT, et al. Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis. Am J Gastroenterol. 2002;97(11):2768–75.

    Google Scholar 

  100. Varadarajulu S, Tamhane A, Eloubeidi MA. Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointest Endosc. 2005;62(5):728–36. quiz 51, 53

    Google Scholar 

  101. Iglesias-Garcia J, Poley JW, Larghi A, et al. Feasibility and yield of a new EUS histology needle: results from a multicenter, pooled, cohort study. Gastrointest Endosc. 2011;73(6):1189–96.

    Google Scholar 

  102. Ribeiro A, Vazquez-Sequeiros E, Wiersema LM, Wang KK, Clain JE, Wiersema MJ. EUS-guided fine-needle aspiration combined with flow cytometry and immunocytochemistry in the diagnosis of lymphoma. Gastrointest Endosc. 2001;53(4):485–91.

    CAS  Google Scholar 

  103. Kandler J, Neuhaus H. How to approach a patient with ampullary lesion. Gastroenterology. 2018;155(6):1670–6.

    Google Scholar 

  104. Ryan DP, Schapiro RH, Warshaw AL. Villous tumors of the duodenum. Ann Surg. 1986;203(3):301–6.

    CAS  Google Scholar 

  105. Lee HS, Jang JS, Lee S, et al. Diagnostic accuracy of the initial endoscopy for ampullary tumors. Clin Endosc. 2015;48(3):239–46.

    CAS  Google Scholar 

  106. Paulsen SD, Nghiem HV, Negussie E, Higgins EJ, Caoili EM, Francis IR. Evaluation of imaging-guided core biopsy of pancreatic masses. AJR Am J Roentgenol. 2006;187(3):769–72.

    Google Scholar 

  107. Tyng CJ, Almeida MF, Barbosa PN, et al. Computed tomography-guided percutaneous core needle biopsy in pancreatic tumor diagnosis. World J Gastroenterol. 2015;21(12):3579–86.

    Google Scholar 

  108. Di Stasi M, Lencioni R, Solmi L, et al. Ultrasound-guided fine needle biopsy of pancreatic masses: results of a multicenter study. Am J Gastroenterol. 1998;93(8):1329–33.

    Google Scholar 

  109. Amin Z, Theis B, Russell RC, House C, Novelli M, Lees WR. Diagnosing pancreatic cancer: the role of percutaneous biopsy and CT. Clin Radiol. 2006;61(12):996–1002.

    CAS  Google Scholar 

  110. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34.

    CAS  Google Scholar 

  111. Brandt KR, Charboneau JW, Stephens DH, Welch TJ, Goellner JR. CT- and US-guided biopsy of the pancreas. Radiology. 1993;187(1):99–104.

    CAS  Google Scholar 

  112. Warshaw AL. Implications of peritoneal cytology for staging of early pancreatic cancer. Am J Surg. 1991;161(1):26–9. discussion 9–30

    CAS  Google Scholar 

  113. Johnson DE, Pendurthi TK, Balshem AM, et al. Implications of fine-needle aspiration in patients with resectable pancreatic cancer. Am Surg. 1997;63(8):675–9. discussion 9–80

    CAS  Google Scholar 

  114. Leach SD, Rose JA, Lowy AM, et al. Significance of peritoneal cytology in patients with potentially resectable adenocarcinoma of the pancreatic head. Surgery. 1995;118(3):472–8.

    CAS  Google Scholar 

  115. Lundstedt C, Stridbeck H, Andersson R, Tranberg KG, Andren-Sandberg A. Tumor seeding occurring after fine-needle biopsy of abdominal malignancies. Acta Radiol. 1991;32(6):518–20.

    CAS  Google Scholar 

  116. Micames C, Jowell PS, White R, et al. Lower frequency of peritoneal carcinomatosis in patients with pancreatic cancer diagnosed by EUS-guided FNA vs. percutaneous FNA. Gastrointest Endosc. 2003;58(5):690–5.

    Google Scholar 

  117. Eloubeidi MA, Tamhane A, Varadarajulu S, Wilcox CM. Frequency of major complications after EUS-guided FNA of solid pancreatic masses: a prospective evaluation. Gastrointest Endosc. 2006;63(4):622–9.

    Google Scholar 

  118. Jailwala J, Fogel EL, Sherman S, et al. Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest Endosc. 2000;51(4 Pt 1):383–90.

    CAS  Google Scholar 

  119. Sugiyama M, Atomi Y, Wada N, Kuroda A, Muto T. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol. 1996;91(3):465–7.

    CAS  Google Scholar 

  120. Schoefl R, Haefner M, Wrba F, et al. Forceps biopsy and brush cytology during endoscopic retrograde cholangiopancreatography for the diagnosis of biliary stenoses. Scand J Gastroenterol. 1997;32(4):363–8.

    CAS  Google Scholar 

  121. Navaneethan U, Hasan MK, Lourdusamy V, Njei B, Varadarajulu S, Hawes RH. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc. 2015;82(4):608–14 e2.

    Google Scholar 

  122. De Luca L, Repici A, Kocollari A, Auriemma F, Bianchetti M, Mangiavillano B. Pancreatoscopy: an update. World J Gastrointest Endosc. 2019;11(1):22–30.

    Google Scholar 

  123. El H II, Brauer BC, Wani S, Fukami N, Attwell AR, Shah RJ. Role of per-oral pancreatoscopy in the evaluation of suspected pancreatic duct neoplasia: a 13-year U.S. single-center experience. Gastrointest Endosc. 2017;85(4):737–45.

    Google Scholar 

  124. Committee ASoP, Chandrasekhara V, Khashab MA, et al. Adverse events associated with ERCP. Gastrointest Endosc. 2017;85(1):32–47.

    Google Scholar 

  125. van der Gaag NA, Rauws EA, van Eijck CH, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med. 2010;362(2):129–37.

    Google Scholar 

  126. Sethi A, Chen YK, Austin GL, et al. ERCP with cholangiopancreatoscopy may be associated with higher rates of complications than ERCP alone: a single-center experience. Gastrointest Endosc. 2011;73(2):251–6.

    Google Scholar 

  127. Committee ASoP, Chathadi KV, Khashab MA, et al. The role of endoscopy in ampullary and duodenal adenomas. Gastrointest Endosc. 2015;82(5):773–81.

    Google Scholar 

  128. Eloubeidi MA, Chen VK, Eltoum IA, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy of patients with suspected pancreatic cancer: diagnostic accuracy and acute and 30-day complications. Am J Gastroenterol. 2003;98(12):2663–8.

    Google Scholar 

  129. Puli SRBM, Buxbaum JL, et al. How good is endoscopic ultrasound-guided fine-needle aspiration in diagnosing the correct etiology for a solid pancreatic mass? A meta-analysis and systematic review. Pancreas. 2013;42(1):20–6.

    Google Scholar 

  130. Chen JYR, Lu Y. Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for solid pancreatic lesion: a systematic review. J Cancer Res Clin Oncol. 138(9):1433–41.

    Google Scholar 

  131. Bang JYMS, Ramesh J, et al. Randomized trial comparing fanning with standard technique for endoscopic ultrasound-guided fine-needle aspiration of solid pancreatic mass lesions. Endoscopy. 2013;45(6):445–50.

    CAS  Google Scholar 

  132. Hebert-Magee SBS, Varadarajulu S, et al. The presence of a cytopathologist increases the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration cytology for pancreatic adenocarcinoma: a meta-analysis. Cytopathology. 2013;24(3):159–71.

    CAS  Google Scholar 

  133. Villa NABM, Wallace MB, et al. Endoscopic ultrasound-guided fine needle aspiration: the wet suction technique. Endosc Ultrasound. 2016;5:17–20.

    Google Scholar 

  134. Saxena PEZM, Stevens T. Stylet slow-pull versus standard suction for endoscopic ultrasound-guided fine-needle aspiration of solid pancreatic lesions: a multicenter randomized trial. Endoscopy. 2018;50(5):497–504.

    Google Scholar 

  135. Weston BRBM. Optimizing diagnostic yield for EUS-guided sampling of solid pancreatic lesions: a technical review. Gastroenterol Hepatol (NY). 2013;9(6):352–63.

    Google Scholar 

  136. Bang JY, Hawes R, Varadarajulu S. A meta-analysis comparing ProCore and standard fine-needle aspiration needles for endoscopic ultrasound-guided tissue acquisition. Endoscopy. 2016;48(4):339–49.

    Google Scholar 

  137. Lee YN, Moon JH, Kim HK, et al. Core biopsy needle versus standard aspiration needle for endoscopic ultrasound-guided sampling of solid pancreatic masses: a randomized parallel-group study. Endoscopy. 2014;46(12):1056–62.

    Google Scholar 

  138. Wani S, Mullady D, Early DS, et al. The clinical impact of immediate on-site cytopathology evaluation during endoscopic ultrasound-guided fine needle aspiration of pancreatic masses: a prospective multicenter randomized controlled trial. Am J Gastroenterol. 2015;110(10):1429–39.

    Google Scholar 

  139. Khoury T, Kadah A, Farraj M, et al. The role of rapid on-site evaluation on diagnostic accuracy of endoscopic ultrasound fine needle aspiration for pancreatic, submucosal upper gastrointestinal tract and adjacent lesions. Cytopathology. 2019;30(5):499–503.

    Google Scholar 

  140. Kandel PWM. Recent advancement in EUS-guided fine needle sampling. J Gastroenterol. 2019;54:377–87.

    Google Scholar 

  141. Bang JYHR, Varadarajulu S. A meta-analysis comparing ProCore and standard fine-needle aspiration needles for endoscopic ultrasound-guided tissue acquisition. Endoscopy. 2016;48(4):339–49.

    Google Scholar 

  142. Bang JY, Hebert-Magee S, Navaneethan U, Hasan MK, Hawes R, Varadarajulu S. Randomized trial comparing the Franseen and Fork-tip needles for EUS-guided fine-needle biopsy sampling of solid pancreatic mass lesions. Gastrointest Endosc. 2018;87(6):1432–8.

    Google Scholar 

  143. Bang JY, Hebert-Magee S, Navaneethan U, Hasan MK, Hawes R, Varadarajulu S. EUS-guided fine needle biopsy of pancreatic masses can yield true histology. Gut. 2018;67(12):2081–4.

    CAS  Google Scholar 

  144. Kandel P, Tranesh G, Nassar A, et al. EUS-guided fine needle biopsy sampling using a novel fork-tip needle: a case-control study. Gastrointest Endosc. 2016;84(6):1034–9.

    Google Scholar 

  145. Khan MAGI, Ali B, et al. A meta-analysis of endoscopic ultrasound-guided-fine-needle aspiration compared to endoscopic ultrasound-guided-fine-needle biopsy: diagnostic yield and the value of onsite cytopathological assessment. Endosc Int Open. 2016;05:E363–E75.

    Google Scholar 

  146. Facciorusso A, Wani S, Triantafyllou K, et al. Comparative accuracy of needle sizes and designs for EUS tissue sampling of solid pancreatic masses: a network meta-analysis. Gastrointest Endosc. 2019;90(6):893–903 e7.

    Google Scholar 

  147. Bang JY, Varadarajulu S. Equal efficacy of FNA and fine-needle biopsy needles for EUS-guided tissue acquisition: really? Gastrointest Endosc. 2019;90(6):904–5.

    Google Scholar 

  148. Thomas T, Kaye PV, Ragunath K, Aithal G. Efficacy, safety, and predictive factors for a positive yield of EUS-guided Trucut biopsy: a large tertiary referral center experience. Am J Gastroenterol. 2009;104(3):584–91.

    Google Scholar 

  149. Chong A, Venugopal K, Segarajasingam D, Lisewski D. Tumor seeding after EUS-guided FNA of pancreatic tail neoplasia. Gastrointest Endosc. 2011;74(4):933–5.

    Google Scholar 

  150. Paquin SC, Gariepy G, Lepanto L, Bourdages R, Raymond G, Sahai AV. A first report of tumor seeding because of EUS-guided FNA of a pancreatic adenocarcinoma. Gastrointest Endosc. 2005;61(4):610–1.

    Google Scholar 

  151. Matsuyama M, Ishii H, Kuraoka K, et al. Ultrasound-guided vs endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer diagnosis. World J Gastroenterol. 2013;19(15):2368–73.

    Google Scholar 

  152. Weilert F, Bhat YM, Binmoeller KF, et al. EUS-FNA is superior to ERCP-based tissue sampling in suspected malignant biliary obstruction: results of a prospective, single-blind, comparative study. Gastrointest Endosc. 2014;80(1):97–104.

    Google Scholar 

  153. de Moura DTH, Ryou M, de Moura EGH, Ribeiro IB, Bernardo WM, Thompson CC. EUS-Guided Fine Needle Aspiration and ERCP-Based Tissue Sampling in Suspected Malignant Biliary Strictures: A Meta-Analysis of Same-Session Procedures. Clin Endosc. 2019;

    Google Scholar 

  154. Savides TJ, Donohue M, Hunt G, et al. EUS-guided FNA diagnostic yield of malignancy in solid pancreatic masses: a benchmark for quality performance measurement. Gastrointest Endosc. 2007;66(2):277–82.

    Google Scholar 

  155. Defrain CCC, Srikureja W, et al. Cytologic Features and Diagnostic Pitfalls of Primary Ampullary Tumors by Endoscopic Ultrasound-Guided Fine-Needle Aspiration Biopsy. Cancer. 2005;105(5):289–97.

    Google Scholar 

  156. Alizadeh AHMSS, Hadizadeh M, et al. Diagnostic potency of EUS-guided FNA for the evaluation of pancreatic mass lesions. Endosc Ultrasound. 2016;5(1):30–4.

    Google Scholar 

  157. Chun YS, Pawlik TM, Vauthey JN. 8th Edition of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann Surg Oncol. 2018;25(4):845–7.

    Google Scholar 

  158. Isaji S, Mizuno S, Windsor JA, et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology. 2018;18(1):2–11.

    Google Scholar 

  159. DeWitt JDB, Lehman GA, et al. Comparison of Endoscopic Ultrasound and Computed Tomography for the Preoperative Evaluation of Pancreatic Cancer: a Systematic Review. Clin Gastroenterol Hepatol. 2006;4:717–25.

    Google Scholar 

  160. Nawaz HY-FC, Kloke J, et al. Performance Characteristics of Endoscopic Ultrasound in the Staging of Pancreatic Cancer: a Meta-Analysis. JOP. 2015;14(5):484–97.

    Google Scholar 

  161. Gress FGHR, Savides TJ, et al. Role of EUS in the preoperative staging of pancreatic cancer: a large single-center experience. Gastrointest Endosc. 1999;50(6):786–91.

    CAS  Google Scholar 

  162. Grimm HMA, Soehendra N. Endoluminal ultrasound for the diagnosis and staging of pancreatic cancer. Baillieres Clin Gastroenterol. 1990;4(4):869–88.

    CAS  Google Scholar 

  163. Ahmad NALJ, Ginsberg GG, et al. EUS in preoperative staging of pancreatic cancer. Gastrointest Endosc. 2000;52(4):463–8.

    CAS  Google Scholar 

  164. Ahmad NALJ, Siegelman ES, et al. Role of endoscopic ultrasound and magnetic resonance imaging in the preoperative staging of pancreatic adenocarcinoma. Am J Gastroenterol. 2000;95(8):1926–31.

    CAS  Google Scholar 

  165. Kitano M, Yoshida T, Itonaga M, Tamura T, Hatamaru K, Yamashita Y. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. J Gastroenterol. 2019;54(1):19–32.

    Google Scholar 

  166. Shami VMMA, Loch MM, et al. Comparison between endoscopic ultrasound and magnetic resonance imaging for the staging of pancreatic cancer. Pancreas. 2011;40(4):567–70.

    Google Scholar 

  167. Tamburrino D RD, Yaghoobi M, et al. Diagnostic accuracy of different imaging modalities following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer. Cochrane Database Syst Rev 2016; 9(CD011515).

    Google Scholar 

  168. Soriano SCA, Ayuso C, et al. Preoperative staging and tumor resectability assessment of pancreatic cancer: prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography. Am J Gastroenterol. 2004;99(3):492–501.

    Google Scholar 

  169. Wang XY, Yang F, Jin C, Fu DL. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. World J Gastroenterol. 2014;20(42):15580–9.

    Google Scholar 

  170. Hariharan D, Constantinides VA, Froeling FE, Tekkis PP, Kocher HM. The role of laparoscopy and laparoscopic ultrasound in the preoperative staging of pancreatico-biliary cancers--A meta-analysis. Eur J Surg Oncol. 2010;36(10):941–8.

    CAS  Google Scholar 

  171. Kim YC, Kim HJ, Park JH, et al. Can preoperative CA19-9 and CEA levels predict the resectability of patients with pancreatic adenocarcinoma? J Gastroenterol Hepatol. 2009;24(12):1869–75.

    CAS  Google Scholar 

  172. Duffy MJ, Sturgeon C, Lamerz R, et al. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Ann Oncol. 2010;21(3):441–7.

    CAS  Google Scholar 

  173. JM H, TM P, NB M. Ampulla of Vater. In: AJCC cancer staging manual, 8th. Amin MB (eds), AJCC, Chicago 2017. p. 327. Corrected at 4th printing, 2018

    Google Scholar 

  174. Qiao QL, Zhao YG, Ye ML, et al. Carcinoma of the ampulla of Vater: factors influencing long-term survival of 127 patients with resection. World J Surg. 2007;31(1):137–43. discussion 44-6

    Google Scholar 

  175. Woo SM, Ryu JK, Lee SH, et al. Feasibility of endoscopic papillectomy in early stage ampulla of Vater cancer. J Gastroenterol Hepatol. 2009;24(1):120–4.

    Google Scholar 

  176. Chen CH, Yang CC, Yeh YH, Chou DA, Nien CK. Reappraisal of endosonography of ampullary tumors: correlation with transabdominal sonography, CT, and MRI. J Clin Ultrasound. 2009;37(1):18–25.

    Google Scholar 

  177. Cannon ME, Carpenter SL, Elta GH, et al. EUS compared with CT, magnetic resonance imaging, and angiography and the influence of biliary stenting on staging accuracy of ampullary neoplasms. Gastrointest Endosc. 1999;50(1):27–33.

    CAS  Google Scholar 

  178. Trikudanathan GNB, Attam R, et al. Staging accuracy of ampullary tumors by endoscopic ultrasound: meta-analysis and systematic review. Dig Endosc. 2014;26(5):617–26.

    Google Scholar 

  179. Castillo C. Endoscopic ultrasound in the papilla and the periampullary region. World J Gastrointest Endosc. 2010;2(8):278–87.

    Google Scholar 

  180. Ito K, Fujita N, Noda Y, et al. Preoperative evaluation of ampullary neoplasm with EUS and transpapillary intraductal US: a prospective and histopathologically controlled study. Gastrointest Endosc. 2007;66(4):740–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kwok .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Small PDAC in head of pancreas with abrupt cutoff of pancreatic duct and common bile duct (MP4 49538 kb)

Upper endoscopy identifying an ulcerated mass at the inferior wall of the gastric body with subsequent EUS revealing direct invasion from PDAC (MP4 71337 kb)

EUS-FNA of PDAC located in the body (MP4 51195 kb)

EUS-FNA of small PDAC (MP4 37617 kb)

EUS-FNA of ampullary cancer (MP4 27981 kb)

EUS showing PDAC in the body with splenic vein abutment and trace ascites (MP4 18442 kb)

EUS showing PDAC located in the uncinate with encasement of the superior mesenteric artery (MP4 94008 kb)

Liver metastasis and primary PDAC identified on EUS with tissue acquisition of both liver lesions and primary pancreatic lesion (MP4 130079 kb)

EUS techniques for evaluating the ampulla and ampullary mass (MP4 15516 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lew, D., Kwok, K. (2022). Diagnosis and Evaluation of Pancreatic and Periampullary Adenocarcinoma. In: Doria, C., Rogart, J.N. (eds) Hepato-Pancreato-Biliary Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-41683-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41683-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41682-9

  • Online ISBN: 978-3-030-41683-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics