Skip to main content

Fish Welfare in Capture-Based Aquaculture (CBA)

  • Chapter
  • First Online:
The Welfare of Fish

Part of the book series: Animal Welfare ((AWNS,volume 20))

Abstract

Capture-based aquaculture (CBA) combines aquaculture practices with capture fisheries to keep the catch alive for either short or long periods of time, for feeding or for live storage. CBA enables us to market numerous species ranging from molluscs, scallops and crustaceans to fish such as tuna, cod, eel and groupers. In CBA, handling and adaptation to new environments have an additional influence upon the stressors to which fish are exposed during capture, and the duration of this impact increases dramatically from minutes and hours in traditional fishing to days and months in CBA. We show how a strong focus on welfare is already present in cod CBA fisheries and the rationale behind this focus. We present a case study on CBA of Atlantic cod (Gadus morhua) as a robust example and model species for detecting welfare risks and mitigating against them. We discuss the main welfare issues in relation to the three broad phases of capture, transport and live storage, and identify common current fish welfare challenges in CBA. We highlight the advantages of pursuing this approach using lessons learnt from an industry in which fisheries and aquaculture meet and where an existing and successful knowledge transfer process between fisheries and aquaculture is already under way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akse L, Midling K (1997) Live capture and starvation of capelin cod (Gadus morhua L.) in order to improve the quality. Dev Food Sci 38:47–58

    Google Scholar 

  • Arnold G, Walker MG (1992) Vertical movements of cod (Gadus morhua L.) in the open sea and the hydrostatic function of the swimbladder. ICES J Mar Sci 49:357–372

    Google Scholar 

  • Beamish F (1979) Swimming capacity. Fish Physiol 7:101–187

    Google Scholar 

  • Beaulieu M-A, Guderley H (1998) Changes in qualitative composition of white muscle with nutritional status of Atlantic cod, Gadus morhua. Comp Biochem Physiol A Mol Integr Physiol 121:135–141

    CAS  PubMed  Google Scholar 

  • Benoît HP, Hurlbut T, Chassé J, Jonsen ID (2012) Estimating fishery-scale rates of discard mortality using conditional reasoning. Fish Res 125:318–330

    Google Scholar 

  • Black D, Love RM (1986) The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J Comp Physiol B Biochem Syst Environ Physiol 156:469–479

    CAS  Google Scholar 

  • Borderias AJ, Sanchez-Alonso I (2011) First processing steps and the quality of wild and farmed fish. J Food Sci 76:R1–R5. https://doi.org/10.1111/j.1750-3841.2010.01900.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botta J, Bonnell G, Squires B (1987a) Effect of method of catching and time of season on sensory quality of fresh raw Atlantic cod (Gadus morhua). J Food Sci 52:928–931

    Google Scholar 

  • Botta J, Kennedy K, Squires B (1987b) Effect of method of catching and time of season on the composition of Atlantic cod (Gadus morhua). J Food Sci 52:922–924

    Google Scholar 

  • Breen M, Dyson J, Oneill F, Jones E, Haigh M (2004) Swimming endurance of haddock (L.) at prolonged and sustained swimming speeds, and its role in their capture by towed fishing gears. ICES J Mar Sci 61:1071–1079. https://doi.org/10.1016/j.icesjms.2004.06.014

    Article  Google Scholar 

  • Broadhurst MK, Suuronen P, Hulme A (2006) Estimating collateral mortality from towed fishing gear. Fish Fish 7:180–218

    Google Scholar 

  • Brown JA, Minkoff G, Puvanendran V (2003) Larviculture of Atlantic cod (Gadus morhua): progress, protocols and problems. Aquaculture 227:357–372

    Google Scholar 

  • Brown JA, Watson J, Bourhill A, Wall T (2010) Physiological welfare of commercially reared cod and effects of crowding for harvesting. Aquaculture 298:315–324. https://doi.org/10.1016/j.aquaculture.2009.10.028

    Article  Google Scholar 

  • Chabot D, Claireaux G (2008) Environmental hypoxia as a metabolic constraint on fish: the case of Atlantic cod, Gadus morhua. Mar Pollut Bull 57:287–294. https://doi.org/10.1016/j.marpolbul.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  • Chopin F, Arimoto T (1995) The condition of fish escaping from fishing gears—a review. Fish Res 21:315–327

    Google Scholar 

  • Colt JE, Tomasso JR (2001) Hatchery water supply and treatment. In: Wedemeyer GA (ed) Fish hatchery management, 2nd edn. American Fisheries Society, Bethesda, pp 91–186

    Google Scholar 

  • Damsgård B, Bjørklund F, Johnsen HK, Toften H (2011) Short-and long-term effects of fish density and specific water flow on the welfare of Atlantic cod, Gadus morhua. Aquaculture 322:184–190

    Google Scholar 

  • Davis MW (2010) Fish stress and mortality can be predicted using reflex impairment. Fish Fish 11:1–11. https://doi.org/10.1111/j.1467-2979.2009.00331.x

    Article  Google Scholar 

  • Davis MW, Schreck CB (2005) Responses by Pacific halibut to air exposure: lack of correspondence among plasma constituents and mortality. Trans Am Fish Soc 134:991–998

    CAS  Google Scholar 

  • Davis M, Olla B, Schreck C (2001) Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: lack of concordance between mortality and physiological measures of stress. J Fish Biol 58:1–15

    Google Scholar 

  • Demers NE, Bayne CJ (1997) The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev Comp Immunol 21:363–373

    CAS  PubMed  Google Scholar 

  • Diggles B (2015) Development of resources to promote best practice in the humane dispatch of finfish caught by recreational fishers. Fish Manag Ecol 23:200–207

    Google Scholar 

  • Diggles BK, Cooke SJ, Rose JD, Sawynok W (2011) Ecology and welfare of aquatic animals in wild capture fisheries. Rev Fish Biol Fish 21:739–765. https://doi.org/10.1007/s11160-011-9206-x

    Article  Google Scholar 

  • Digre H, Hansen UJ, Erikson U (2010) Effect of trawling with traditional and ‘T90’ trawl codends on fish size and on different quality parameters of cod Gadus morhua and haddock Melanogrammus aeglefinus. Fish Sci 76:549–559. https://doi.org/10.1007/s12562-010-0254-2

    Article  CAS  Google Scholar 

  • Digre H, Rosten C, Erikson U, Mathiassen JR, Aursand IG (2017) The on-board live storage of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) caught by trawl: fish behaviour, stress and fillet quality. Fish Res 189:42–54

    Google Scholar 

  • Dreyer BM, Nøstvold BH, Midling KØ, Hermansen Ø (2008) Capture-based aquaculture of cod. In: Lovatelli A, Holthus PF (eds) Capture-based aquaculture global overview. FAO fisheries technical paper no. 508, Rome, pp 183–198

    Google Scholar 

  • Eigaard OR, Bastardie F, Breen M, Dinesen GE, Hintzen NT, Laffargue P, Mortensen LO, Nielsen JR, Nilsson HC, O’Neill FG (2016) Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J Mar Sci 73:i27–i43

    Google Scholar 

  • Ellis T, Berrill I, Lines J, Turnbull JF, Knowles TG (2012) Mortality and fish welfare. Fish Physiol Biochem 38:189–199. https://doi.org/10.1007/s10695-011-9547-3

    Article  CAS  PubMed  Google Scholar 

  • Esaiassen M, Nilsen H, Joensen S, Skjerdal T, Carlehög M, Eilertsen G, Gundersen B, Elvevoll E (2004) Effects of catching methods on quality changes during storage of cod (Gadus morhua). LWT Food Sci Technol 37:643–648. https://doi.org/10.1016/j.lwt.2004.02.002

    Article  CAS  Google Scholar 

  • Esaiassen M, Akse L, Joensen S (2013) Development of a catch-damage index to assess the quality of cod at landing. Food Control 29:231–235. https://doi.org/10.1016/j.foodcont.2012.05.065

    Article  Google Scholar 

  • Fänge R (1953) The mechanisms of gas transport in the euphysoclist swimbladder. Acta Physiol Scand Suppl 30:1–133

    PubMed  Google Scholar 

  • Fletcher R, Roy W, Davie A, Taylor J, Robertson D, Migaud H (2007) Evaluation of new microparticulate diets for early weaning of Atlantic cod (Gadus morhua): implications on larval performances and tank hygiene. Aquaculture 263:35–51

    Google Scholar 

  • Grimaldo E, Sistiaga M, Larsen RB (2014) Development of catch control devices in the Barents Sea cod fishery. Fish Res 155:122–126

    Google Scholar 

  • Guderley H, Lapointe D, Bédard M, Dutil J-D (2003) Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L. Comp Biochem Physiol A Mol Integr Physiol 135:347–356

    PubMed  Google Scholar 

  • Hatlen B, Grisdale-Helland B, Helland SJ (2006) Growth variation and fin damage in Atlantic cod (Gadus morhua L.) fed at graded levels of feed restriction. Aquaculture 261:1212–1221

    Google Scholar 

  • Hermansen Ø, Eide A (2013) Bioeconomics of capture-based aquaculture of cod (Gadus morhua). Aquac Econ Manag 17:31–50

    Google Scholar 

  • Humborstad O-B, Mangor-Jensen A (2013) Buoyancy adjustment after swimbladder puncture in cod Gadus morhua: an experimental study on the effect of rapid decompression in capture-based aquaculture. Mar Biol Res 9:383–393. https://doi.org/10.1080/17451000.2012.742546

    Article  Google Scholar 

  • Humborstad O-B, Davis MW, Løkkeborg S (2009) Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish Bull 107:395–402

    Google Scholar 

  • Humborstad O-B, Isaksen B, Midling K, Saltskår J, Totland B, Øvredal JT (2010) Optimal føringskapasitet og velferd for levende, villfanget torsk. Del 2: Praktiske forsøk-uttesting av etasjeskiller for økt hvileareal

    Google Scholar 

  • Humborstad O-B, Breen M, Davis MW, Løkkeborg S, Mangor-Jensen A, Midling KØ, Olsen RE (2016a) Survival and recovery of longline- and pot-caught cod (Gadus morhua) for use in capture-based aquaculture (CBA). Fish Res 174:103–108

    Google Scholar 

  • Humborstad OB, Ferter K, Kryvi H, Fjelldal P (2016b) Exophthalmia in wild-caught cod (Gadus morhua L.): development of a secondary barotrauma effect in captivity. J Fish Dis 40:41–49

    PubMed  Google Scholar 

  • Huntingford F, Kadri S (2009) Taking account of fish welfare: lessons from aquaculture. J Fish Biol 75:2862–2867

    CAS  PubMed  Google Scholar 

  • Huntingford FA, Adams C, Braithwaite V, Kadri S, Pottinger T, Sandøe P, Turnbull J (2006) Current issues in fish welfare. J Fish Biol 68:332–372

    Google Scholar 

  • Ingólfsson ÓA, Jørgensen T (2006) Escapement of gadoid fish beneath a commercial bottom trawl: relevance to the overall trawl selectivity. Fish Res 79:303–312

    Google Scholar 

  • Ingólfsson ÓA, Soldal AV, Huse I, Breen M (2007) Escape mortality of cod, saithe, and haddock in a Barents Sea trawl fishery. ICES J Mar Sci 64:1836–1844

    Google Scholar 

  • Jobling M, Meløy O, Santos JD, Christiansen B (1994) The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquac Int 2:75–90

    Google Scholar 

  • Johansen L-H, Jensen I, Mikkelsen H, Bjørn P-A, Jansen P, Bergh Ø (2011) Disease interaction and pathogens exchange between wild and farmed fish populations, with special reference to Norway. Aquaculture 315:167–186

    Google Scholar 

  • Jørgensen T, Midling K, Espelid S, Nilsen R, Stensvåg K (1989) Vibrio salmonicida, a pathogen in salmonids, also causes mortality in net-pen captured cod (Gadus morhua). Bull Eur Assoc Fish Pathol 9:42–44

    Google Scholar 

  • Kaweewat K, Hofer R (1997) Effect of UV-B radiation on goblet cells in the skin of different fish species. J Photochem Photobiol B Biol 41:222–226

    CAS  Google Scholar 

  • Khan R (2004) Disease outbreaks and mass mortality in cultured Atlantic cod, Gadus morhua L., associated with Trichodina murmanica (Ciliophora). J Fish Dis 27:181–184

    CAS  PubMed  Google Scholar 

  • Lambooij E, Digre H, Reimert H, Aursand I, Grimsmo L, Van de Vis J (2012) Effects of on-board storage and electrical stunning of wild cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on brain and heart activity. Fish Res 127:1–8

    Google Scholar 

  • Lovatelli A (2011) Use of wild fishery resources for capture-based aquaculture. FAO technical guidelines for responsible fisheries. FAO, Rome, p 81

    Google Scholar 

  • Lovatelli A, Holthus PF (2008) Capture-based aquaculture: global overview, vol 508. FAO Fisheries Technical Paper, Rome

    Google Scholar 

  • Lyngstad TM, Høgåsen HR, Ørpetveit I, Hellberg H, Dale OB, Lillehaug A (2008) Faglig vurdering i forbindelse med bekjempelse av viral hemoragisk septikemi (VHS) i Storfjorden. Norwegian Veterinary Institute, Report 3:1–20

    Google Scholar 

  • Lyngstad TM, Hellberg H, Viljugrein H, Jensen BB, Brun E, Sergeant E, Tavornpanich S (2016) Routine clinical inspections in Norwegian marine salmonid sites: a key role in surveillance for freedom from pathogenic viral haemorrhagic septicaemia (VHS). Prev Vet Med 124:85–95

    PubMed  Google Scholar 

  • Margeirsson S, Jonsson GR, Arason S, Thorkelsson G (2007) Influencing factors on yield, gaping, bruises and nematodes in cod (Gadus morhua) fillets. J Food Eng 80:503–508

    Google Scholar 

  • Martins CI, Galhardo L, Noble C, Damsgård B, Spedicato MT, Zupa W, Beauchaud M, Kulczykowska E, Massabuau J-C, Carter T (2012) Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem 38:17–41

    CAS  PubMed  Google Scholar 

  • Metcalfe J (2009) Welfare in wild-capture marine fisheries. J Fish Biol 75:2855–2861

    CAS  PubMed  Google Scholar 

  • Midling KØ, Koren C, Humborstad O-B, Sæther B-S (2012) Swimbladder healing in Atlantic cod (Gadus morhua), after decompression and rupture in capture-based aquaculture. Mar Biol Res 8:373–379

    Google Scholar 

  • Misimi E, Martinsen S, Mathiassen JR, Erikson U (2014) Discrimination between weaned and unweaned Atlantic cod (Gadus morhua) in capture-based aquaculture (CBA) by X-ray imaging and radio-frequency metal detector. PLoS One 9:e95363

    PubMed  PubMed Central  Google Scholar 

  • Misund OA, Beltestad AK (1995) Survival of herring after simulated net bursts and conventional storage in net pens. Fish Res 22:293–297

    Google Scholar 

  • Mood A (2010) Worse things happen at sea: the welfare of wild-caught fish. Summary report. fishcount.org.uk

  • Murray A (2016) A modelling framework for assessing the risk of emerging diseases associated with the use of cleaner fish to control parasitic sea lice on salmon farms. Transbound Emerg Dis 63:270–277

    Google Scholar 

  • Nakada M (2008) Capture-based aquaculture of yellowtails. In: Lovatelli A, Holthus PF (eds) Capture-based aquaculture global overview. FAO fisheries technical paper no. 508, Rome, pp 199–215

    Google Scholar 

  • Noble C, Kadri S, Mitchell DF, Huntingford FA (2007) Influence of feeding regime on intraspecific competition, fin damage and growth in 1+ Atlantic salmon parr (Salmo salar L.) held in freshwater production cages. Aquac Res 38:1137–1143

    Google Scholar 

  • Noble C, Berrill IK, Waller B, Kankainen M, Setälä J, Honkanen P, Mejdell CM, Turnbull JF, Damsgård B, Schneider O (2012a) A multi-disciplinary framework for bio-economic modeling in aquaculture: a welfare case study. Aquac Econ Manag 16:297–314

    Google Scholar 

  • Noble C, Jones HAC, Damsgård B, Flood MJ, Midling KØ, Roque A, Sæther B-S, Cottee SY (2012b) Injuries and deformities in fish: their potential impacts upon aquacultural production and welfare. Fish Physiol Biochem 38:61–83

    CAS  PubMed  Google Scholar 

  • Olsen RE, Sundell K, Ringø E, Myklebust R, Hemre G-I, Hansen T, Karlsen Ø (2008) The acute stress response in fed and food-deprived Atlantic cod, Gadus morhua L. Aquaculture 280:232–241. https://doi.org/10.1016/j.aquaculture.2008.05.006

    Article  Google Scholar 

  • Olsen SH, Tobiassen T, Akse L, Evensen TH, Midling KØ (2013) Capture-induced stress and live storage of Atlantic cod (Gadus morhua) caught by trawl: consequences for the flesh quality. Fish Res 147:446–453. https://doi.org/10.1016/j.fishres.2013.03.009

    Article  Google Scholar 

  • Olsen SH, Digre H, Grimsmo L, Toldnes B, Eilertsen A, Evensen TH, Midling KØ (2014) Implementering av teknologi for optimal kvalitet i fremtidens prosesslinje på trålere “OPTIPRO”–Fase 1

    Google Scholar 

  • Ottolenghi F (2008) Capture-based aquaculture of bluefin tuna. Capture-based aquaculture Global Overview. FAO fisheries technical paper 508, pp 169–182

    Google Scholar 

  • Ottolenghi F, Silvestri C, Giordano P, Lovatelli A, New MB (2004) Capture-based aquaculture: the fattening of eels, groupers, tunas and yellowtails. FAO

    Google Scholar 

  • Person-Le Ruyet J, Labbé L, Le Bayon N, Sévère A, Le Roux A, Le Delliou H, Quéméner L (2008) Combined effects of water quality and stocking density on welfare and growth of rainbow trout (Oncorhynchus mykiss). Aquat Living Resour 21:185–195

    Google Scholar 

  • Plante S, Chabot D, Dutil JD (1998) Hypoxia tolerance in Atlantic cod. J Fish Biol 53:1342–1356

    Google Scholar 

  • Poli B, Parisi G, Scappini F, Zampacavallo G (2005) Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquac Int 13:29–49

    Google Scholar 

  • Portz DE, Woodley CM, Cech JJ (2006) Stress-associated impacts of short-term holding on fishes. Rev Fish Biol Fish 16:125–170

    Google Scholar 

  • Rotabakk BT, Skipnes D, Akse L, Birkeland S (2011) Quality assessment of Atlantic cod (Gadus morhua) caught by longlining and trawling at the same time and location. Fish Res 112:44–51. https://doi.org/10.1016/j.fishres.2011.08.009

    Article  Google Scholar 

  • Rummer JL, Bennett WA (2005) Physiological effects of swim bladder overexpansion and catastrophic decompression on red snapper. Trans Am Fish Soc 134:1457–1470. https://doi.org/10.1577/t04-235.1

    Article  Google Scholar 

  • Ryer C (2004) Laboratory evidence for behavioural impairment of fish escaping trawls: a review. ICES J Mar Sci 61:1157–1164. https://doi.org/10.1016/j.icesjms.2004.06.004

    Article  Google Scholar 

  • Sæther BS, Noble C, Humborstad O, Martinsen S, Veliyulin E, Misimi E, Midling KØ (2012) Fangstbasert akvakultur. Mellomlagring, oppfôring og foredling av villfanget fisk. Nofima Rep 14:50

    Google Scholar 

  • Sæther B-S, Noble C, Midling KØ, Tobiassen T, Akse L, Koren C, Humborstad OB (2016) Velferd hos villfanget torsk i merd – Hovedvekt på hold uten fôring ut over 12 uker. Nofima Rep 16:32

    Google Scholar 

  • Sainsbury J (1997) Commercial fishing methods: an introduction to vessels and gears. Oceanogr Lit Rev 11:1345

    Google Scholar 

  • Salman J, Vannier P, Wierup M (2009) Species-specific welfare aspects of the main systems of stunning and killing of farmed tuna. Scientific opinion of the panel on animal health and welfare. ESFA J 1072:1–53

    Google Scholar 

  • Samuelsen OB, Nerland AH, Jørgensen T, Schrøder MB, Svåsand T, Bergh Ø (2006) Viral and bacterial diseases of Atlantic cod Gadus morhua, their prophylaxis and treatment: a review. Dis Aquat Org 71:239–254

    PubMed  Google Scholar 

  • Sangster G, Lehmann K (1993) Assessment of the survival of fish escaping from commercial fishing gears. ICES CM, 6–7

    Google Scholar 

  • Santos G, Schrama J, Mamauag R, Rombout J, Verreth J (2010) Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): the combined effects of fish crowding and water quality deterioration. Aquaculture 299:73–80

    Google Scholar 

  • Sanz A, Furné M, Trenzado CE, de Haro C, Sánchez-Muros M (2012) Study of the oxidative state, as a marker of welfare, on Gilthead Sea bream, Sparus aurata, subjected to handling stress. J World Aquacult Soc 43:707–715

    Google Scholar 

  • Schurmann H, Steffensen J (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50:1166–1180

    Google Scholar 

  • Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L (2012) Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38:85–105

    CAS  PubMed  Google Scholar 

  • Skall HF, Olesen NJ, Mellergaard S (2005) Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming – a review. J Fish Dis 28:509–529

    CAS  PubMed  Google Scholar 

  • Soldal AV, Engås A (1997) Survival of young gadoids excluded from a shrimp trawl by a rigid deflecting grid. ICES J Mar Sci 54:117–124

    Google Scholar 

  • Soldal AV, Isaksen B, Marteinsson JE, Engås A (1991) Scale damage and survival of cod and haddock escaping from a demersal trawl. ICES CM Documents B 44

    Google Scholar 

  • Southgate PJ (2008) Welfare of fish during transport. In: Branson EJ (ed) Fish welfare. Blackwell, Oxford, pp 185–194

    Google Scholar 

  • Staurnes M, Sigholt T, Pedersen HP, Rustad T (1994) Physiological effects of simulated high-density transport of Atlantic cod (Gadus morhua). Aquaculture 119:381–391

    CAS  Google Scholar 

  • Steen J (1963) The physiology of the swimbladder in the eel Anguilla vulgaris. Acta Physiol 59:221–241

    CAS  Google Scholar 

  • Sundnes G (1957) On the transport of live cod and coalfish. J Conseil 22:191–196

    Google Scholar 

  • Suuronen P (2005) Mortality of fish escaping trawl gears. No 478. Food & Agriculture Org

    Google Scholar 

  • Suuronen P, Erickson DL (2010) Mortality of animals that escape fishing gears or are discarded after capture: approaches to reduce mortality. In: He P (ed) Behavior of marine fishes: capture processes and conservation challenges. Wiley, Oxford, pp 265–293

    Google Scholar 

  • Suuronen P, Lehtonen E, Tschernij V, Larsson P (1996) Skin injury and mortality of Baltic cod escaping from trawl codends equipped with exit windows. Arch Fish Mar Res 44:165–178

    Google Scholar 

  • Suuronen P, Lehtonen E, Jounela P (2005) Escape mortality of trawl caught Baltic cod (Gadus morhua)—the effect of water temperature, fish size and codend catch. Fish Res 71:151–163. https://doi.org/10.1016/j.fishres.2004.08.022

    Article  Google Scholar 

  • Tenningen M, Vold A, Olsen RE (2012) The response of herring to high crowding densities in purse-seines: survival and stress reaction. ICES J Mar Sci 69:1523–1531

    Google Scholar 

  • Tupper M, Sheriff N (2008) Capture-based aquaculture of groupers. In: Lovatelli A, Holthus PF (eds) Capture-based aquaculture global overview. FAO fisheries technical paper no. 508, Rome, pp 217–253

    Google Scholar 

  • Tytler P, Blaxter J (1973) Adaptation by cod and saithe to pressure changes. Neth J Sea Res 7:31–45

    Google Scholar 

  • Volkoff H, Xu M, MacDonald E, Hoskins L (2009) Aspects of the hormonal regulation of appetite in fish, with emphasis on goldfish, Atlantic cod and winter flounder: notes on actions and responses to nutritional, environmental and reproductive changes. Comp Biochem Physiol A Mol Integr Physiol 153:8–12

    PubMed  Google Scholar 

  • Wilson SM, Raby GD, Burnett NJ, Hinch SG, Cooke SJ (2014) Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals. Biol Conserv 171:61–72

    Google Scholar 

  • Wood C, Turner J, Graham M (1983) Why do fish die after severe exercise? J Fish Biol 22:189–201

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odd-Børre Humborstad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humborstad, OB., Noble, C., Sæther, BS., Midling, K.Ø., Breen, M. (2020). Fish Welfare in Capture-Based Aquaculture (CBA). In: Kristiansen, T., Fernö, A., Pavlidis, M., van de Vis, H. (eds) The Welfare of Fish. Animal Welfare, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-41675-1_18

Download citation

Publish with us

Policies and ethics