Skip to main content

Algal Nanoparticles: Boon for Antimicrobial Therapeutic Applications

  • Chapter
  • First Online:
Nanostructures for Antimicrobial and Antibiofilm Applications

Abstract

Nanotechnology is the field that deals with nano-sized structures of different shapes. Nanoparticles are generally synthesized using inorganic materials with restricted usages. However, there has been a great demand for nanoparticles in various medical applications. In the recent times, the usage of antibiotics has increased, which also has adverse effects to the immune system. Nanotechnology paves way to find the alternate resources for antibiotics. Eco-friendly nanoparticles are synthesized using biological organisms such as plants, bacteria, fungi, and algae. Algae are said to be the reservoir of nanoparticles, and hence, they are also called as nanofactories. Algae are used to produce metallic nanoparticles that can be used as antimicrobial agents. This chapter discusses the types of nanoparticles, synthesis of nanoparticles from algae, different kinds of algae that produce antimicrobial nanoparticles, and mechanism of nanoparticle as an antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboelfetoh EF, El-Shenody RA, Ghobara MM (2017) Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess 189:349

    Article  PubMed  CAS  Google Scholar 

  • Ahmed R, Mohsin M, Ahmad T, Sardar M (2015) Alpha amylase assisted synthesis of TiO2 nano particles: structural characterization and application as antibacterial agents. J Hazard Mater 283:171–177

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  • Alberti S, Böhse K, Arndt V, Schmitz A, Höhfeld J (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(9):4003–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander JW (2009) History of the medical use of silver. Surg Infect 10:3

    Google Scholar 

  • Arévalo-Gallegos A et al (2018) Botryococcus braunii as a bioreactor for the production of nanoparticles with antimicrobial potentialities. Int J Nanomed 13:5591–5604

    Article  Google Scholar 

  • Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and Silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018:7879403, 9p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashok Kumar D, Palanichamy V, Roopan M (2014) Photocatalytic action of AgCl nanoparticles and its antibacterial activity. J Photochem Photobiol B 138:302–306

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, BabuRajendran R, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331–335

    CAS  PubMed  Google Scholar 

  • Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities- a review. J Pharm Biomed Anal 106:25–36

    Article  CAS  PubMed  Google Scholar 

  • Barwal I, Ranjan V, Kateriya S, Yadav C (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56

    Article  CAS  Google Scholar 

  • Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI (2010) Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci U S A 107(51):22038–22043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015:246012

    Article  PubMed  PubMed Central  Google Scholar 

  • Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2(5):395–401

    Article  PubMed  Google Scholar 

  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(8):2768–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    Article  PubMed  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Coll Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653

    Article  CAS  Google Scholar 

  • Chung YC, Wang HL, Chen YM, Li SL (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour Technol 88(3):179–184

    Article  CAS  PubMed  Google Scholar 

  • da Silva Ferreira V et al (2017) Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzym Microb Technol 97:114–121

    Article  CAS  Google Scholar 

  • Dahoumane SA, Djediat C, Yepremian C, Coute A, Fievet F, Coradin T, Brayner R (2012) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288

    Article  CAS  PubMed  Google Scholar 

  • Dahoumane SA, Wijesekera K, Filipe CDM, Brennan JD (2014) Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. J Colloid Interface Sci 416:67–72

    Article  CAS  PubMed  Google Scholar 

  • Davis SA, Patel HM, Mayes EL, Mendelson NH, Franco G, Mann S (1998) Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater 10:2516–2524

    Article  CAS  Google Scholar 

  • De Aragao AP et al (2019) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem 12(8):4182–4188. https://doi.org/10.1016/j.arabjc.2016.04.014

    Article  CAS  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exo polysaccharide producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • Denyer SP, Stewart GSAB (1998) Mechanisms of action of disinfectants. Int Biodeterior Biodegrad 41(3–4):261–268

    Article  CAS  Google Scholar 

  • Devina Merin D et al (2010) Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med 1:797–799

    Article  CAS  Google Scholar 

  • Dutkiewicz A, Malinowski P (2012) Aortobifemoral prothesis infection. Pol Ann Med 19:129–133

    Article  Google Scholar 

  • Edhaya Naveena B et al (2013) Biological synthesis of gold nanoparticles using marine algae racilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res 6(2):179–182

    CAS  Google Scholar 

  • Eom SH, Kim YM, Kim SK (2012) Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol 50:3251–3255

    Article  CAS  PubMed  Google Scholar 

  • Espitia PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5(5):1447–1464

    Google Scholar 

  • Evanoff D, Chumanov GJR (2005) Synthesis and optical properties of Silver nanoparticles and arrays. ChemPhysChem 6:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Ganesh Kumar C, Mamidyala SK, Sreedhar B, Belum Reddy VS (2011) Synthesis and characterization of gold glycol nano particles functionalized with sugars of sweet sorghum syrup. Biotechnol Prog 27:1455–1463

    Article  PubMed  CAS  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Coll Surf B 74:328–335

    Article  CAS  Google Scholar 

  • Hamal B, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir 26(4):2805–2810

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Hasnain S (2005) Cultural characteristics of chromium resistant unicellular cyanobacteria isolated from local environment in Pakistan. Chin J Oceanol Limnol 23:433–441

    Article  CAS  Google Scholar 

  • Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD (2009) Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One 4(11):e7804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30(14):2782–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill WR, Pillsbury DM (1939) Argyria–the pharmacology of silver. Williams & Wilkins, Baltimore

    Google Scholar 

  • Huaizhi Z, Yuantao N (2001) China’s ancient gold drugs. Gold Bull 34:24–29

    Article  Google Scholar 

  • Huh AJ, Kwon YJ (2011) Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Tao Z, Hussain A et al (2014) Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan. Arch Microbiol 196(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2015) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65(4):551–560. https://doi.org/10.1111/ppa.12443

    Article  CAS  Google Scholar 

  • Indira K, Ningshen S, Kamachi Mudali U, Rajendran N (2012) Effect of anodization parameters on the structural morphology of titanium in fluoride containing electrolytes. Mater Charact 71:58–65

    Article  CAS  Google Scholar 

  • Indira K, Kamachi Mudali U, Rajendran N (2014) Invitro bioactivity and corrosion resistance of Zrin corporated TiO2 nanotube arrays for orthopaedic applications. Appl Surf Sci 316:264–275

    Article  CAS  Google Scholar 

  • Jacob-Lopes E, Franco TT (2013) From oil refinery to microalgal bioreinery. J CO2 Utilizat 2:1–7

    Article  CAS  Google Scholar 

  • Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3:1969–1985

    Article  CAS  PubMed  Google Scholar 

  • Jeffryes C, Agathos SN, Rorrer G (2015) Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol 33:23–31

    Article  CAS  PubMed  Google Scholar 

  • Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Bios 3:1–8

    Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74(1):46–52

    Article  CAS  Google Scholar 

  • Kalabegishvili T et al (2012) Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Adv Sci Eng Med 4:1–7

    Article  CAS  Google Scholar 

  • Khurana C, Vala AK, Andhariya N, Pandey OP, Chudasama B (2014) Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes. Environ Sci Process Impact 16(9):2191–2198

    Article  CAS  Google Scholar 

  • Kumaresan M et al (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against Gram positive and Gram negative bacteria. Microb Pathog 124:311–315

    Google Scholar 

  • Kutner AJ, Friedman AJ (2013) Use of nitric oxide nanoparticulate platform for the treatment of skin and soft tissue infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(5):502–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavakumar et al (2015) Promising upshot of silver nanoparticles primed from Gracilaria crassa against bacterial pathogens. Chem Cent J 9:42. https://doi.org/10.1186/s13065-015-0120-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leid JG et al (2012) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67(1):138–148

    Article  CAS  PubMed  Google Scholar 

  • LewisOscar F, Bakkiyaraj D, Nithya C, Thajuddin N (2014) Deciphering the diversity of microalgal bloom in wastewater-an attempt to construct potential consortia for bioremediation. JCPAM 3(2):92–96

    Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317

    Article  Google Scholar 

  • Loomba L, Scarabelli T (2013) Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther Deliv 4(9):1179–1196

    Article  CAS  PubMed  Google Scholar 

  • Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14(7):4757–4780

    Article  CAS  PubMed  Google Scholar 

  • Maria Theresa F et al (2018) Facile synthesis of biologically derived fluorescent carbon nanoparticles (FCNPs) from an abundant marine alga and its biological activities. Orient J Chem 34(2):791–799

    Article  CAS  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, González F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  CAS  PubMed  Google Scholar 

  • Minhas FT et al (2018) Evaluation of antibacterial properties on polysulfone composite membranes using synthesized biogenic silver nanoparticles with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz extracts. Int J Biol Macromol 107:157–165

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Temelli F, Ooraikul Shacklock PF, Craigie JS (1993) Lipids of the red alga. Palmaria Palmate Bot Mar 36:169–174

    CAS  Google Scholar 

  • Moghimi SM, Kissel T (2006) Particulate nanomedicines. Adv Drug Deliv Rev 58:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extra cellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Munoz-Bonilla A, Fernandez-Garcia M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(7):281–339

    Article  CAS  Google Scholar 

  • Murphin Kumar PS et al (2017) Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microb Pathog 113:68–73

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169:59–79

    Article  CAS  Google Scholar 

  • Ninganagouda S, Rathod V, Singh D, Hiremath J, Singh AK, Mathew J, Manzoor ul-Haq (2014) Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus niger on of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Google Scholar 

  • Oza G, Pandey S, Mewada A, Kalita G, Sharon M (2012) Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 3:1405–1412

    CAS  Google Scholar 

  • Palanikumar L, Ramasamy SN, Balachandran C (2014) Size dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol 8(2):111–117

    Article  CAS  PubMed  Google Scholar 

  • Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  CAS  PubMed  Google Scholar 

  • Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest J Nanomater Biostruct 4:45–50

    Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria-a green chemistry approach. J Appl Phycol 24:55–60

    Article  CAS  Google Scholar 

  • Pey P, Packiyaraj MS, Nigam H, Agarwal GS, Singh B, Patra MK (2014) Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores. Beilstein J Nanotechnol 5:789–800

    Article  CAS  Google Scholar 

  • Philip D (2010) Green synthesis of gold and silver nano particles using Hibiscus rosasinensis. Phys E 42:1417–1424

    Article  CAS  Google Scholar 

  • Poulose S, Panda T, Nair PP, Th’eodore T (2014) Biosynthesis of silver nanoparticles. J Nanosci Nanotechnol 14(2):2038–2049

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer International Publishing, New York. ISBN 978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal Nanobionics: principles and applications. Springer Nature Singapore Pvt Ltd., Singapore. ISBN 978-981-10-8666-3. https://www.springer.com/gb/book/9789811086656

    Book  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar S, Kannan C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown algae turbinaria conoides and its antibacterial activity. Int J Pharm Bio Sci 3(4):502–510

    CAS  Google Scholar 

  • Rajeshkumar S et al (2013) Antibacterial activity of algae mediated synthesis of gold nanoparticles from turbinaria conoides. Der Pharm Chem 5(2):224–229

    CAS  Google Scholar 

  • Raji V, Kumar J, Rejiya CS, Vibin M, Shenoi VN, Abraham A (2011) Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells. Exp Cell Res 317(14):2052–2058

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotech Rep 5:22–26

    Article  Google Scholar 

  • Ramalingam N et al (2018) Green synthesis of silver nanoparticles using red marine algae and evaluation of its antibacterial activity. J Pharm Sci Res 10(10):2435–2438

    CAS  Google Scholar 

  • Rauwel P, Kuunal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015:682749

    Google Scholar 

  • Ravinder Singh C, Kathiresan K, Anandhan S (2015) A review on marine based nanoparticles and their potential applications. Afr J Biotechnol 14:1525–1532

    Article  CAS  Google Scholar 

  • Reddy P, Urban S (2008) Linear and cyclic C18 terpenoids from the southern Australian marine brown alga Cystophora moniliformis. J Nat Prod 71(8):1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Richards DG, McMIllin DL, Mein EA (2002) Gold and its relationship to neurological/glandular conditions. Int J Neurosci 112:31–53

    Article  PubMed  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  PubMed  Google Scholar 

  • Salari Z et al (2016) Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 20:459–464

    Article  CAS  Google Scholar 

  • Schrofel A, Kratosova G, Bohunicka M, Dobrocka E, Vavra I (2011) Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

    Article  CAS  Google Scholar 

  • Shabnam N, Pardha-Saradhi P (2013) Photosynthetic electron transport system promotes synthesis of Au-nanoparticles. PLoS One 8:e71123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiny PJ, Mukherjee A, Chandrasekaran N (2013) Marine algae mediated synthesis of the silver nanoparticles and its antibacterial efficiency. Int J Pharm Pharm Sci 5(2):239–241

    CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  CAS  PubMed  Google Scholar 

  • Singaravelu G, Arokiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of mondisperse gold nanoparticles using marine alga, Sargassum wightti Greville. Coll Surf B 57(1):97–101

    Article  CAS  Google Scholar 

  • Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH (2013) Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces 5(19):9322–9329

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria. J Colloid Interface Sci 275(1):177–182

    Google Scholar 

  • Sri Vishnu Priya R, Narendhrans S, Sivaraj R (2016) Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull Mater Sci 39(2):361–364

    Article  CAS  Google Scholar 

  • Stalin Dhas T et al (2014) Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta A Mol Biomol Spectrosc 120:416–420

    Article  CAS  PubMed  Google Scholar 

  • Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40(12):1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Thajuddin N, Subramanian G (1992) Survey of cyanobacterial flora of the southern east coast of India. Bot Mar 35:305–314

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biomed 6:257–262

    Article  CAS  Google Scholar 

  • Uma Suganya KS et al (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against gram positive organisms. Mater Sci Eng C 47:351–356

    Article  CAS  Google Scholar 

  • Varisco M, Khanna N, Brunetto PS, Fromm KM (2014) New antimicrobial and biocompatible implant coating with synergic silver-vancomycin conjugate action. Chem Med Chem 9(6):1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Venkatpurwar V et al (2011) Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Mater Lett 65:999–1002

    Article  CAS  Google Scholar 

  • Yousefzadi M et al (2014) The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen). J Agardh Mater Lett 137:1–4

    Article  CAS  Google Scholar 

  • Zan L, Fa W, Peng T, Gong ZK (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J Photochem Photobiol B 86(2):165–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathinavel, L., Jothinathan, D., Sivasankar, V., Mylsamy, P., Omine, K., Selvarajan, R. (2020). Algal Nanoparticles: Boon for Antimicrobial Therapeutic Applications. In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-40337-9_6

Download citation

Publish with us

Policies and ethics