Skip to main content

Hyaluronan in the Tumor Microenvironment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1245))

Abstract

The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alaniz L, Rizzo M, Malvicini M, Jaunarena J, Avella D, Atorrasagasti C, Aquino JB, Garcia M, Matar P, Silva M, Mazzolini G (2009) Low molecular weight hyaluronan inhibits colorectal carcinoma growth by decreasing tumor cell proliferation and stimulating immune response. Cancer Lett 278:9–16

    Article  CAS  PubMed  Google Scholar 

  2. Ali R, Rakha EA, Madhusudan S, Bryant HE (2017) DNA damage repair in breast cancer and its therapeutic implications. Pathology 49:156–165

    Article  CAS  PubMed  Google Scholar 

  3. Alison MR, Lin WR, Lim SM, Nicholson LJ (2012) Cancer stem cells: in the line of fire. Cancer Treat Rev 38:589–598

    Article  CAS  PubMed  Google Scholar 

  4. Arai E, Nishida Y, Wasa J, Urakawa H, Zhuo L, Kimata K, Kozawa E, Futamura N, Ishiguro N (2011) Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer 105:1839–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Auvinen P, Tammi R, Kosma VM, Sironen R, Soini Y, Mannermaa A, Tumelius R, Uljas E, Tammi M (2013) Increased hyaluronan content and stromal cell CD44 associate with HER2 positivity and poor prognosis in human breast cancer. Int J Cancer 132:531–539

    Article  CAS  PubMed  Google Scholar 

  6. Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM (2000) Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 156:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Avnet S, Cortini M (2016) Role of pericellular matrix in the regulation of cancer stemness. Stem Cell Rev 12:464–475

    Article  CAS  Google Scholar 

  8. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596

    Article  CAS  PubMed  Google Scholar 

  9. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    Article  PubMed  Google Scholar 

  10. Baumgartner G, Gomar-Hoss C, Sakr L, Ulsperger E, Wogritsch C (1998) The impact of extracellular matrix on the chemoresistance of solid tumors--experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett 131:85–99

    Article  CAS  PubMed  Google Scholar 

  11. Benitez A, Yates TJ, Lopez LE, Cerwinka WH, Bakkar A, Lokeshwar VB (2011) Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res 71:4085–4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berdiaki A, Nikitovic D, Tsatsakis A, Katonis P, Karamanos NK, Tzanakakis GN (2009) bFGF induces changes in hyaluronan synthase and hyaluronidase isoform expression and modulates the migration capacity of fibrosarcoma cells. Biochim Biophys Acta 1790:1258–1265

    Article  CAS  PubMed  Google Scholar 

  13. Berger L, Shamai Y, Skorecki KL, Tzukerman M (2016) Tumor specific recruitment and reprogramming of mesenchymal stem cells in tumorigenesis. Stem Cells 34:1011–1026

    Article  CAS  PubMed  Google Scholar 

  14. Bernert B, Porsch H, Heldin P (2011) Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J Biol Chem 286:42349–42359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H (2017) A trickster in disguise: hyaluronan’s ambivalent roles in the matrix. Front Oncol 7:242

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bollyky PL, Falk BA, Long SA, Preisinger A, Braun KR, Wu RP, Evanko SP, Buckner JH, Wight TN, Nepom GT (2009) CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF-beta. J Immunol 183:2232–2241

    Article  CAS  PubMed  Google Scholar 

  17. Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, Teng B, Holt GE, Standifer NE, Braun KR, Xie CF, Samuels PL, Vernon RB, Gebe JA, Wight TN, Nepom GT (2011) ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A 108:7938–7943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonder CS, Clark SR, Norman MU, Johnson P, Kubes P (2006) Use of CD44 by CD4+ Th1 and Th2 lymphocytes to roll and adhere. Blood 107:4798–4806

    Article  CAS  PubMed  Google Scholar 

  19. Bosch-Presegue L, Vaquero A (2011) The dual role of sirtuins in cancer. Genes Cancer 2:648–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bouga H, Tsouros I, Bounias D, Kyriakopoulou D, Stavropoulos MS, Papageorgakopoulou N, Theocharis DA, Vynios DH (2010) Involvement of hyaluronidases in colorectal cancer. BMC Cancer 10:499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bourguignon LY, Wong G, Earle CA, Xia W (2011) Interaction of low molecular weight hyaluronan with CD44 and toll-like receptors promotes the actin filament-associated protein 110-actin binding and MyD88-NFkappaB signaling leading to proinflammatory cytokine/chemokine production and breast tumor invasion. Cytoskeleton (Hoboken) 68:671–693

    Article  CAS  Google Scholar 

  22. Briggs A, Rosenberg L, Buie JD, Rizvi H, Bertagnolli MM, Cho NL (2015) Antitumor effects of hyaluronan inhibition in desmoid tumors. Carcinogenesis 36:272–279

    Article  CAS  PubMed  Google Scholar 

  23. Campbell DJ, Koch MA (2011) Treg cells: patrolling a dangerous neighborhood. Nat Med 17:929–930

    Article  CAS  PubMed  Google Scholar 

  24. Carrassa L, Damia G (2017) DNA damage response inhibitors: mechanisms and potential applications in cancer therapy. Cancer Treat Rev 60:139–151

    Article  CAS  PubMed  Google Scholar 

  25. Clarkin CE, Allen S, Wheeler-Jones CP, Bastow ER, Pitsillides AA (2011) Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol 30:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cordo Russo RI, Garcia MG, Alaniz L, Blanco G, Alvarez E, Hajos SE (2008) Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating P-glycoprotein activity and PI3K/Akt pathway. Int J Cancer 122:1012–1018

    Article  PubMed  CAS  Google Scholar 

  27. Csoka AB, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20:499–508

    Article  CAS  PubMed  Google Scholar 

  28. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  29. Chanmee T, Ontong P, Itano N (2016) Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett 375:20–30

    Article  CAS  PubMed  Google Scholar 

  30. Chao H, Spicer AP (2005) Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation. J Biol Chem 280:27513–27522

    Article  CAS  PubMed  Google Scholar 

  31. Chi A, Shirodkar SP, Escudero DO, Ekwenna OO, Yates TJ, Ayyathurai R, Garcia-Roig M, Gahan JC, Manoharan M, Bird VG, Lokeshwar VB (2012) Molecular characterization of kidney cancer: association of hyaluronic acid family with histological subtypes and metastasis. Cancer 118:2394–2402

    Article  CAS  PubMed  Google Scholar 

  32. Day AJ, Milner CM (2019) TSG-6: a multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 78-79:60–83

    Article  CAS  PubMed  Google Scholar 

  33. Deberardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  34. Deen AJ, Arasu UT, Pasonen-Seppanen S, Hassinen A, Takabe P, Wojciechowski S, Karna R, Rilla K, Kellokumpu S, Tammi R, Tammi M, Oikari S (2016) UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol Life Sci 73:3183–3204

    Article  CAS  PubMed  Google Scholar 

  35. Degrendele HC, Kosfiszer M, Estess P, Siegelman MH (1997) CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol 159:2549–2553

    CAS  PubMed  Google Scholar 

  36. Du Y, Cao M, Liu Y, He Y, Yang C, Wu M, Zhang G, Gao F (2016) Low-molecular-weight hyaluronan (LMW-HA) accelerates lymph node metastasis of melanoma cells by inducing disruption of lymphatic intercellular adhesion. Oncoimmunology 5:e1232235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Eissa S, Shehata H, Mansour A, Esmat M, El-Ahmady O (2012) Detection of hyaluronidase RNA and activity in urine of schistosomal and non-schistosomal bladder cancer. Med Oncol 29:3345–3351

    Article  CAS  PubMed  Google Scholar 

  38. Feldmeyer L, Gaide O, Speiser DE (2013) Clinical implications of CD8+ T-cell infiltration in frequent and rare cancers. J Invest Dermatol 133:1929–1932

    Article  CAS  PubMed  Google Scholar 

  39. Firan M, Dhillon S, Estess P, Siegelman MH (2006) Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44. Blood 107:619–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Freedman JA, Wang Y, Li X, Liu H, Moorman PG, George DJ, Lee NH, Hyslop T, Wei Q, Patierno SR (2018) Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival. Carcinogenesis 39:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  42. Golshani R, Hautmann SH, Estrella V, Cohen BL, Kyle CC, Manoharan M, Jorda M, Soloway MS, Lokeshwar VB (2007) HAS1 expression in bladder cancer and its relation to urinary HA test. Int J Cancer 120:1712–1720

    Article  CAS  PubMed  Google Scholar 

  43. Golshani R, Lopez L, Estrella V, Kramer M, Iida N, Lokeshwar VB (2008) Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res 68:483–491

    Article  CAS  PubMed  Google Scholar 

  44. Hagiuda D, Nagashio R, Ichinoe M, Tsuchiya B, Igawa S, Naoki K, Satoh Y, Murakumo Y, Saegusa M, Sato Y (2019) Clinicopathological and prognostic significance of nuclear UGDH localization in lung adenocarcinoma. Biomed Res 40:17–27

    Article  CAS  PubMed  Google Scholar 

  45. Hanover JA, Chen W, Bond MR (2018) O-GlcNAc in cancer: an oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 50:155–173

    Article  CAS  PubMed  Google Scholar 

  46. Hartheimer JS, Park S, Rao SS, Kim Y (2019) Targeting hyaluronan interactions for glioblastoma stem cell therapy. Cancer Microenviron 12:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hascall VC (2019) The journey of hyaluronan research in the journal of biological chemistry. J Biol Chem 294:1690–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heldin P, Basu K, Olofsson B, Porsch H, Kozlova I, Kahata K (2013) Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J Biochem 154:395–408

    Article  CAS  PubMed  Google Scholar 

  49. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  CAS  PubMed  Google Scholar 

  50. Hosono K, Nishida Y, Knudson W, Knudson CB, Naruse T, Suzuki Y, Ishiguro N (2007) Hyaluronan oligosaccharides inhibit tumorigenicity of osteosarcoma cell lines MG-63 and LM-8 in vitro and in vivo via perturbation of hyaluronan-rich pericellular matrix of the cells. Am J Pathol 171:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12:157–167

    Article  CAS  PubMed  Google Scholar 

  52. Huang D, Casale GP, Tian J, Lele SM, Pisarev VM, Simpson MA, Hemstreet GP 3rd (2010) Udp-glucose dehydrogenase as a novel field-specific candidate biomarker of prostate cancer. Int J Cancer 126:315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang G, Huang H (2018) Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 25:766–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Isoyama T, Thwaites D, Selzer MG, Carey RI, Barbucci R, Lokeshwar VB (2006) Differential selectivity of hyaluronidase inhibitors toward acidic and basic hyaluronidases. Glycobiology 16:11–21

    Article  CAS  PubMed  Google Scholar 

  55. Itano N, Kimata K (2002) Mammalian hyaluronan synthases. IUBMB Life 54:195–199

    Article  CAS  PubMed  Google Scholar 

  56. Jacobson A, Rahmanian M, Rubin K, Heldin P (2002) Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int J Cancer 102:212–219

    Article  CAS  PubMed  Google Scholar 

  57. Johnson LA, Banerji S, Lawrance W, Gileadi U, Prota G, Holder KA, Roshorm YM, Hanke T, Cerundolo V, Gale NW, Jackson DG (2017) Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat Immunol 18:762–770

    Article  CAS  PubMed  Google Scholar 

  58. Jordan AR, Lokeshwar SD, Lopez LE, Hennig M, Chipollini J, Yates T, Hupe MC, Merseburger AS, Shiedlin A, Cerwinka WH, Liu K, Lokeshwar VB (2017) Antitumor activity of sulfated hyaluronic acid fragments in pre-clinical models of bladder cancer. Oncotarget 8:24262–24274

    Article  PubMed  Google Scholar 

  59. Josefsson A, Adamo H, Hammarsten P, Granfors T, Stattin P, Egevad L, Laurent AE, Wikstrom P, Bergh A (2011) Prostate cancer increases hyaluronan in surrounding nonmalignant stroma, and this response is associated with tumor growth and an unfavorable outcome. Am J Pathol 179:1961–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kakizaki I, Takagaki K, Endo Y, Kudo D, Ikeya H, Miyoshi T, Baggenstoss BA, Tlapak-Simmons VL, Kumari K, Nakane A, Weigel PH, Endo M (2002) Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem 269:5066–5075

    Article  CAS  PubMed  Google Scholar 

  61. Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY (2018) Hyaluronic acid-based nanomaterials for cancer therapy. Polymers (Basel) 10:pii: E1133

    Article  CAS  Google Scholar 

  62. Klocker J, Sabitzer H, Raunik W, Wieser S, Schumer J (1998) Hyaluronidase as additive to induction chemotherapy in advanced squamous cell carcinoma of the head and neck. Cancer Lett 131:113–115

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi N, Miyoshi S, Mikami T, Koyama H, Kitazawa M, Takeoka M, Sano K, Amano J, Isogai Z, Niida S, Oguri K, Okayama M, Mcdonald JA, Kimata K, Taniguchi S, Itano N (2010) Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Res 70:7073–7083

    Article  CAS  PubMed  Google Scholar 

  64. Kolliopoulos C, Bounias D, Bouga H, Kyriakopoulou D, Stavropoulos M, Vynios DH (2013) Hyaluronidases and their inhibitors in the serum of colorectal carcinoma patients. J Pharm Biomed Anal 83:299–304

    Article  CAS  PubMed  Google Scholar 

  65. Kolliopoulos C, Lin CY, Heldin CH, Moustakas A, Heldin P (2019) Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFbeta-induced EMT in breast cancer. Matrix Biol 80:29–45

    Article  CAS  PubMed  Google Scholar 

  66. Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kota DJ, Prabhakara KS, Cox CS, Olson SD (2014) MSCS and hyaluronan: sticking together for new therapeutic potential? Int J Biochem Cell Biol 55:1–10

    Article  CAS  PubMed  Google Scholar 

  68. Kovar JL, Johnson MA, Volcheck WM, Chen J, Simpson MA (2006) Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. Am J Pathol 169:1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kramer MW, Escudero DO, Lokeshwar SD, Golshani R, Ekwenna OO, Acosta K, Merseburger AS, Soloway M, Lokeshwar VB (2011) Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis. Cancer 117:1197–1209

    Article  CAS  PubMed  Google Scholar 

  70. Kultti A, Pasonen-Seppanen S, Jauhiainen M, Rilla KJ, Karna R, Pyoria E, Tammi RH, Tammi MI (2009) 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res 315:1914–1923

    Article  CAS  PubMed  Google Scholar 

  71. Kultti A, Zhao C, Singha NC, Zimmerman S, Osgood RJ, Symons R, Jiang P, Li X, Thompson CB, Infante JR, Jacobetz MA, Tuveson DA, Frost GI, Shepard HM, Huang Z (2014) Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int 2014:817613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, Girard L, Behrens C, Wistuba I, Gazdar AF, Hayward NK, Minna JD (2016) ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126:3219–3235

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lepperdinger G, Mullegger J, Kreil G (2001) Hyal2--less active, but more versatile? Matrix Biol 20:509–514

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Li L, Brown TJ, Heldin P (2007) Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int J Cancer 120:2557–2567

    Article  CAS  PubMed  Google Scholar 

  75. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lokeshwar VB, Lopez LE, Munoz D, Chi A, Shirodkar SP, Lokeshwar SD, Escudero DO, Dhir N, Altman N (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res 70:2613–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lokeshwar VB, Mirza S, Jordan A (2014) Targeting hyaluronic acid family for cancer chemoprevention and therapy. Adv Cancer Res 123:35–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lompardia SL, Diaz M, Papademetrio DL, Mascaro M, Pibuel M, Alvarez E, Hajos SE (2016) Hyaluronan oligomers sensitize chronic myeloid leukemia cell lines to the effect of Imatinib. Glycobiology 26:343–352

    Article  CAS  PubMed  Google Scholar 

  79. Lompardia SL, Papademetrio DL, Mascaro M, Alvarez EM, Hajos SE (2013) Human leukemic cell lines synthesize hyaluronan to avoid senescence and resist chemotherapy. Glycobiology 23:1463–1476

    Article  CAS  PubMed  Google Scholar 

  80. Maina V, Cotena A, Doni A, Nebuloni M, Pasqualini F, Milner CM, Day AJ, Mantovani A, Garlanda C (2009) Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6. J Leukoc Biol 86:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Majidinia M, Yousefi B (2017) DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst) 54:22–29

    Article  CAS  Google Scholar 

  82. Manic G, Sistigu A, Corradi F, Musella M, De Maria R, Vitale I (2018) Replication stress response in cancer stem cells as a target for chemotherapy. Semin Cancer Biol 53:31–41

    Article  CAS  PubMed  Google Scholar 

  83. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Melzer C, Von Der Ohe J, Hass R (2018) Concise review: crosstalk of mesenchymal stroma/stem-like cells with cancer cells provides therapeutic potential. Stem Cells 36(7):951–968

    Article  CAS  PubMed  Google Scholar 

  85. Misra S, Hascall VC, Markwald RR, Ghatak S (2015) Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 6:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Misra S, Obeid LM, Hannun YA, Minamisawa S, Berger FG, Markwald RR, Toole BP, Ghatak S (2008) Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 283:14335–14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Monzon ME, Fregien N, Schmid N, Falcon NS, Campos M, Casalino-Matsuda SM, Forteza RM (2010) Reactive oxygen species and hyaluronidase 2 regulate airway epithelial hyaluronan fragmentation. J Biol Chem 285:26126–26134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morohashi H, Kon A, Nakai M, Yamaguchi M, Kakizaki I, Yoshihara S, Sasaki M, Takagaki K (2006) Study of hyaluronan synthase inhibitor, 4-methylumbelliferone derivatives on human pancreatic cancer cell (KP1-NL). Biochem Biophys Res Commun 345:1454–1459

    Article  CAS  PubMed  Google Scholar 

  89. Nagase H, Kudo D, Suto A, Yoshida E, Suto S, Negishi M, Kakizaki I, Hakamada K (2017) 4-Methylumbelliferone suppresses hyaluronan synthesis and tumor progression in SCID mice intra-abdominally inoculated with pancreatic cancer cells. Pancreas 46:190–197

    Article  CAS  PubMed  Google Scholar 

  90. Nagelkerke A, Span PN (2016) Staining against phospho-H2AX (gamma-H2AX) as a marker for dna damage and genomic instability in cancer tissues and cells. Adv Exp Med Biol 899:1–10

    Article  CAS  PubMed  Google Scholar 

  91. Nykopp TK, Rilla K, Sironen R, Tammi MI, Tammi RH, Hamalainen K, Heikkinen AM, Komulainen M, Kosma VM, Anttila M (2009) Expression of hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in serous ovarian carcinomas: inverse correlation between HYAL1 and hyaluronan content. BMC Cancer 9:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Oikari S, Kettunen T, Tiainen S, Hayrinen J, Masarwah A, Sudah M, Sutela A, Vanninen R, Tammi M, Auvinen P (2018) UDP-sugar accumulation drives hyaluronan synthesis in breast cancer. Matrix Biol 67:63–74

    Article  CAS  PubMed  Google Scholar 

  93. Paul S, Lal G (2017) The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 8:1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Pease JC, Tirnauer JS (2011) Mitotic spindle misorientation in cancer--out of alignment and into the fire. J Cell Sci 124:1007–1016

    Article  CAS  PubMed  Google Scholar 

  95. Piccioni F, Malvicini M, Garcia MG, Rodriguez A, Atorrasagasti C, Kippes N, Piedra Buena IT, Rizzo MM, Bayo J, Aquino J, Viola M, Passi A, Alaniz L, Mazzolini G (2012) Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology 22:400–410

    Article  CAS  PubMed  Google Scholar 

  96. Pillwein K, Fuiko R, Slavc I, Czech T, Hawliczek G, Bernhardt G, Nirnberger G, Koller U (1998) Hyaluronidase additional to standard chemotherapy improves outcome for children with malignant brain tumors. Cancer Lett 131:101–108

    Article  CAS  PubMed  Google Scholar 

  97. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Posey JT, Soloway MS, Ekici S, Sofer M, Civantos F, Duncan RC, Lokeshwar VB (2003) Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Res 63:2638–2644

    CAS  PubMed  Google Scholar 

  99. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Purcell SH, Moley KH (2009) Glucose transporters in gametes and preimplantation embryos. Trends Endocrinol Metab 20:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rajasagi M, Von Au A, Singh R, Hartmann N, Zoller M, Marhaba R (2010) Anti-CD44 induces apoptosis in T lymphoma via mitochondrial depolarization. J Cell Mol Med 14:1453–1467

    Article  CAS  PubMed  Google Scholar 

  102. Rezaeian AH, Li CF, Wu CY, Zhang X, Delacerda J, You MJ, Han F, Cai Z, Jeong YS, Jin G, Phan L, Chou PC, Lee MH, Hung MC, Sarbassov D, Lin HK (2017) A hypoxia-responsive TRAF6-ATM-H2AX signalling axis promotes HIF1alpha activation, tumorigenesis and metastasis. Nat Cell Biol 19:38–51

    Article  CAS  PubMed  Google Scholar 

  103. Ricciardelli C, Ween MP, Lokman NA, Tan IA, Pyragius CE, Oehler MK (2013) Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer. BMC Cancer 13:476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T, Gronau S (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44:823–829

    Article  CAS  PubMed  Google Scholar 

  105. Rilla K, Pasonen-Seppanen S, Deen AJ, Koistinen VV, Wojciechowski S, Oikari S, Karna R, Bart G, Torronen K, Tammi RH, Tammi MI (2013) Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp Cell Res 319:2006–2018

    Article  CAS  PubMed  Google Scholar 

  106. Rizzo M, Bayo J, Piccioni F, Malvicini M, Fiore E, Peixoto E, Garcia MG, Aquino JB, Gonzalez Campana A, Podesta G, Terres M, Andriani O, Alaniz L, Mazzolini G (2014) Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLoS One 9:e107944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Rowland A, Miners JO, Mackenzie PI (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45:1121–1132

    Article  CAS  PubMed  Google Scholar 

  108. Rowley AT, Nagalla RR, Wang SW, Liu WF (2019) Extracellular matrix-based strategies for immunomodulatory biomaterials engineering. Adv Healthc Mater 8:e1801578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sague SL, Tato C, Pure E, Hunter CA (2004) The regulation and activation of CD44 by natural killer (NK) cells and its role in the production of IFN-gamma. J Interf Cytokine Res 24:301–309

    Article  CAS  Google Scholar 

  111. Sato N, Cheng XB, Kohi S, Koga A, Hirata K (2016) Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma. Acta Pharm Sin B 6:101–105

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schmaus A, Klusmeier S, Rothley M, Dimmler A, Sipos B, Faller G, Thiele W, Allgayer H, Hohenberger P, Post S, Sleeman JP (2014) Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer 111:559–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schwertfeger KL, Cowman MK, Telmer PG, Turley EA, Mccarthy JB (2015) Hyaluronan, inflammation, and breast cancer progression. Front Immunol 6:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T (2013) Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res 19:6193–6204

    Article  CAS  PubMed  Google Scholar 

  115. Shen YN, Shin HJ, Joo HY, Park ER, Kim SH, Hwang SG, Park SJ, Kim CH, Lee KH (2014) Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage. Biochem Biophys Res Commun 443:796–801

    Article  CAS  PubMed  Google Scholar 

  116. Shuster S, Frost GI, Csoka AB, Formby B, Stern R (2002) Hyaluronidase reduces human breast cancer xenografts in SCID mice. Int J Cancer 102:192–197

    Article  CAS  PubMed  Google Scholar 

  117. Singha NC, Nekoroski T, Zhao C, Symons R, Jiang P, Frost GI, Huang Z, Shepard HM (2014) Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Mol Cancer Ther 14:523–532

    Article  PubMed  CAS  Google Scholar 

  118. Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L, Maria BL, Toole BP (2009a) Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res 69:4992–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP (2009b) Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res 15:7593–7601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Spinelli FM, Vitale DL, Demarchi G, Cristina C, Alaniz L (2015) The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunology 4:e52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Spinelli FM, Vitale DL, Icardi A, Caon I, Brandone A, Giannoni P, Saturno V, Passi A, Garcia M, Sevic I, Alaniz L (2019) Hyaluronan preconditioning of monocytes/macrophages affects their angiogenic behavior and regulation of TSG-6 expression in a tumor type-specific manner. FEBS J 286(17):3433–3449

    Article  CAS  PubMed  Google Scholar 

  123. Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, Jelinek D, Whiteley AE, Maxwell MB, Wilde BR, Banerjee U, Coller HA, Shackelford DB, Braas D, Ayer DE, De Aguiar Vallim TQ, Lowry WE, Christofk HR (2018) Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175:117–132 e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428

    Article  CAS  PubMed  Google Scholar 

  125. Tan JX, Wang XY, Li HY, Su XL, Wang L, Ran L, Zheng K, Ren GS (2011a) HYAL1 overexpression is correlated with the malignant behavior of human breast cancer. Int J Cancer 128:1303–1315

    Article  CAS  PubMed  Google Scholar 

  126. Tan JX, Wang XY, Su XL, Li HY, Shi Y, Wang L, Ren GS (2011b) Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis. PLoS One 6:e22836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thapa R, Wilson GD (2016) The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int 2016:2087204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Thompson CB, Shepard HM, O’connor PM, Kadhim S, Jiang P, Osgood RJ, Bookbinder LH, Li X, Sugarman BJ, Connor RJ, Nadjsombati S, Frost GI (2010) Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 9:3052–3064

    Article  CAS  PubMed  Google Scholar 

  129. Tiainen S, Tumelius R, Rilla K, Hamalainen K, Tammi M, Tammi R, Kosma VM, Oikari S, Auvinen P (2015) High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66:873–883

    Article  PubMed  Google Scholar 

  130. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499:346–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Uchakina ON, Ban H, Hostetler BJ, Mckallip RJ (2016) Inhibition of hyaluronic acid formation sensitizes chronic myelogenous leukemia to treatment with doxorubicin. Glycobiology 26:1171–1179

    CAS  PubMed  Google Scholar 

  132. Udabage L, Brownlee GR, Waltham M, Blick T, Walker EC, Heldin P, Nilsson SK, Thompson EW, Brown TJ (2005) Antisense-mediated suppression of hyaluronan synthase 2 inhibits the tumorigenesis and progression of breast cancer. Cancer Res 65:6139–6150

    Article  CAS  PubMed  Google Scholar 

  133. Urakawa H, Nishida Y, Knudson W, Knudson CB, Arai E, Kozawa E, Futamura N, Wasa J, Ishiguro N (2012) Therapeutic potential of hyaluronan oligosaccharides for bone metastasis of breast cancer. J Orthop Res 30:662–672

    Article  CAS  PubMed  Google Scholar 

  134. Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A (2012) Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 287:35544–35555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vigetti D, Viola M, Karousou E, De Luca G, Passi A (2014) Metabolic control of hyaluronan synthases. Matrix Biol 35:8–13

    Article  CAS  PubMed  Google Scholar 

  136. Vitale DL, Spinelli FM, Del Dago D, Icardi A, Demarchi G, Caon I, Garcia M, Bolontrade MF, Passi A, Cristina C, Alaniz L (2018) Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget 9:36585–36602

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wallach-Dayan SB, Rubinstein AM, Hand C, Breuer R, Naor D (2008) DNA vaccination with CD44 variant isoform reduces mammary tumor local growth and lung metastasis. Mol Cancer Ther 7:1615–1623

    Article  CAS  PubMed  Google Scholar 

  138. Wang L, Zuo X, Xie K, Wei D (2017) The role of CD44 and cancer stem cells. Cancer Stem Cells Methods Protocols Methods Mol Biol 1692:31–42

    Article  CAS  Google Scholar 

  139. Wang TP, Pan YR, Fu CY, Chang HY (2010) Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells. Exp Cell Res 316:2893–2902

    Article  CAS  PubMed  Google Scholar 

  140. Ward JA, Huang L, Guo H, Ghatak S, Toole BP (2003) Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. Am J Pathol 162:1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Weigel PH (2015) Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol 2015:367579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Weiss I, Trope CG, Reich R, Davidson B (2012) Hyaluronan synthase and hyaluronidase expression in serous ovarian carcinoma is related to anatomic site and chemotherapy exposure. Int J Mol Sci 13:12925–12938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD (2011) Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov 1:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wolny PM, Banerji S, Gounou C, Brisson AR, Day AJ, Jackson DG, Richter RP (2010) Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan. J Biol Chem 285:30170–30180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wong TY, Chang C-H, Yu C-H, Huang LLH (2017) Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell 16:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wu M, Cao M, He Y, Liu Y, Yang C, Du Y, Wang W, Gao F (2015) A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J 29:1290–1298

    Article  CAS  PubMed  Google Scholar 

  147. Yabushita H, Noguchi M, Kishida T, Fusano K, Noguchi Y, Itano N, Kimata K, Noguchi M (2004) Hyaluronan synthase expression in ovarian cancer. Oncol Rep 12:739–743

    CAS  PubMed  Google Scholar 

  148. Yamada Y, Itano N, Narimatsu H, Kudo T, Morozumi K, Hirohashi S, Ochiai A, Ueda M, Kimata K (2004) Elevated transcript level of hyaluronan synthase1 gene correlates with poor prognosis of human colon cancer. Clin Exp Metastasis 21:57–63

    Article  CAS  PubMed  Google Scholar 

  149. Yan L, Xu F, Dai CL (2018) Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. J Exp Clin Cancer Res 37:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Yang C, Cao M, Liu H, He Y, Xu J, Du Y, Liu Y, Wang W, Cui L, Hu J, Gao F (2012) The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem 287:43094–43107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yoffou PH, Edjekouane L, Meunier L, Tremblay A, Provencher DM, Mes-Masson AM, Carmona E (2011) Subtype specific elevated expression of hyaluronidase-1 (HYAL-1) in epithelial ovarian cancer. PLoS One 6:e20705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhao Z, Liang T, Feng S (2019) Silencing of HAS2-AS1 mediates PI3K/AKT signaling pathway to inhibit cell proliferation, migration, and invasion in glioma. J Cell Biochem 120:11510–11516

    Google Scholar 

  154. Zhu G, Wang S, Chen J, Wang Z, Liang X, Wang X, Jiang J, Lang J, Li L (2017) Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma. Mol Carcinog 56:2210–2222

    Article  CAS  PubMed  Google Scholar 

  155. Zou L, Song X, Yi T, Li S, Deng H, Chen X, Li Z, Bai Y, Zhong Q, Wei Y, Zhao X (2013) Administration of PLGA nanoparticles carrying shRNA against focal adhesion kinase and CD44 results in enhanced antitumor effects against ovarian cancer. Cancer Gene Ther 20:242–250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Alaniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spinelli, F.M., Vitale, D.L., Sevic, I., Alaniz, L. (2020). Hyaluronan in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1245. Springer, Cham. https://doi.org/10.1007/978-3-030-40146-7_3

Download citation

Publish with us

Policies and ethics