Skip to main content

Cancer Prevention by Tea Polyphenols

  • Chapter
  • First Online:
Book cover Natural Products for Cancer Chemoprevention

Abstract

The cancer preventive activities of tea (Camellia Sinensis Theaceae) have been investigated extensively in laboratory and human studies. Green tea polyphenols, mainly catechins, have shown inhibitory activities against tumorigenesis in different animal models, including those for cancers of the lung, oral cavity, esophagus, stomach, small intestine, colon, bladder, liver, pancreas, skin, prostate and mammary glands. Similar activities have also been reported in some human studies. This chapter reviews the nature of these inhibitory actions and discusses possible mechanisms involved. These inhibitory activities are attributed to catechins, especially the most abundant (−)-epigallocatechin-3-gallate (EGCG). The antioxidant or pro-oxidant activities of catechins and their binding to molecular targets would affect signal transduction and metabolic pathways that enhance apoptosis, suppress cell proliferation, and inhibit angiogenesis, resulting in the inhibition of carcinogenesis and cancer cell growth. Tea is considered a healthy beverage. However, the effect of tea consumption on the prevention of cancer in humans still needs to be further investigated. This chapter discusses some future directions in this area of research and concerns about possible toxicity, especially with high doses of tea polyphenols in tablet form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

67LR:

67 kDa Laminin receptor

ACF:

Aberrant crypt foci

AKT:

Protein kinase B

AOM:

Azoxymethane

CVDs:

Cardiovascular diseases

DNMT:

DNA methyltransferase

EC:

(−)-Epicatechin

ECG:

(−)-Epicatechin-3-gallate

EGC:

(−)-Epigallocatechin

EGCG:

(−)-Epigallocatechin-3-gallate

EGFR:

Epidermal growth factor receptor

GTE:

Green tea extract

HAT:

Acetyltransferase

HCC:

Hepatocellular carcinoma

HFD:

High-fat diet

HGFR or c-Met:

Hepatocyte growth factor receptor

hTERT:

Human telomerase reverse transcriptase

IGF1:

Insulin-like growth factor 1

IGF1R:

IGF1 receptor

IGFBP3:

IGF binding protein 3

IHC:

Immunohistochemistry

M4:

5-(3′, 4′, 5′-trihydroxyphenyl)-γ-valerolactone

M6:

5-(3′, 4′-dihydroxyphenyl)-γ-valerolactone

M6′:

5-(3′, 5′-dihydroxyphenyl)-γ-valerolactone

MAPK:

Mitogen-activated protein kinases

MMP:

Matrix metalloproteinase

MRP2:

Multidrug resistant protein 2

NNK:

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

Nrf2:

Nuclear factor erythroid 2-related factor 2

OR:

Odds ratio

PDE5:

Phosphodiesterase 5

PI3K:

Phosphotidylinositol 3-kinase

PIN:

Prostate intraepithelial neoplasia

PPE:

Polyphenon E

RCT:

Randomized clinical trial

ROS:

Reactive oxygen species

RTKs:

Receptor tyrosine kinases

SFRP:

Secreted frizzled-related protein

SPR:

Surface plasmon resonance

STAT1:

Signal transduction activator of transcription 1

TAM:

Tumor-associated macrophages

TRAMP:

Transgenic adenocarcinoma of the mouse prostate

VEGFA:

Vascular endothelial growth factor A

VEGFR:

Vascular endothelial growth factor receptor

References

  • Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L, Weinstein IB (2007) The inhibitory effect of (−)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in ht29 colon cancer cells. Cancer Res 67:6493–6501

    Article  CAS  PubMed  Google Scholar 

  • Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-i-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64:8715–8722

    Article  CAS  PubMed  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704

    Article  CAS  PubMed  Google Scholar 

  • Bamia C, Lagiou P, Jenab M, Trichopoulou A, Fedirko V, Aleksandrova K, Pischon T, Overvad K, Olsen A, Tjonneland A, Boutron-Ruault MC, Fagherazzi G, Racine A, Kuhn T, Boeing H, Floegel A, Benetou V, Palli D, Grioni S, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, Dik VK, Bhoo-Pathy N, Uiterwaal CS, Weiderpass E, Lund E, Quiros JR, Zamora-Ros R, Molina-Montes E, Chirlaque MD, Ardanaz E, Dorronsoro M, Lindkvist B, Wallstrom P, Nilsson LM, Sund M, Khaw KT, Wareham N, Bradbury KE, Travis RC, Ferrari P, Duarte-Salles T, Stepien M, Gunter M, Murphy N, Riboli E, Trichopoulos D (2015) Coffee, tea and decaffeinated coffee in relation to hepatocellular carcinoma in a european population: multicentre, prospective cohort study. Int J Cancer 136:1899–1908

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) Micrornas: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Chen YT, Wu Y, Du ML, Chu HY, Zhu LJ, Tong N, Zhang ZD, Wang ML, Gu DY, Chen JF (2017) An inverse association between tea consumption and colorectal cancer risk. Oncotarget 8:37367–37376

    PubMed  PubMed Central  Google Scholar 

  • Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, Zhang L, Reuhl K, Kobayashi K, Onishi JC, Zhao L, Yang CS (2019) Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect. Mol Nutr Food Res 63:e1801064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits ebv-induced b lymphocyte transformation via suppression of rela acetylation. Cancer Res 69:583–592

    Article  CAS  PubMed  Google Scholar 

  • Chow HH, Hakim IA, Vining DR, Crowell JA, Tome ME, Ranger-Moore J, Cordova CA, Mikhael DM, Briehl MM, Alberts DS (2007) Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomark Prev 16:1662–1666

    Article  CAS  Google Scholar 

  • Chung FL, Wang M, Rivenson A, Iatropoulos MJ, Reinhardt JC, Pittman B, Ho CT, Amin SG (1998) Inhibition of lung carcinogenesis by black tea in fischer rats treated with a tobacco-specific carcinogen: caffeine as an important constituent. Cancer Res 58:4096–4101

    CAS  PubMed  Google Scholar 

  • Clifford MN, van der Hooft JJ, Crozier A (2013) Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 98:1619S–1630S

    Article  CAS  PubMed  Google Scholar 

  • Coia H, Ma N, Hou Y, Dyba MD, Fu Y, Cruz MI, Benitez C, Graham GT, McCutcheon JN, Zheng YL, Sun B, Kallakury BV, Ma J, Fang HB, Berry DL, Muralidaran V, Chung FL (2018) Prevention of lipid peroxidation-derived cyclic DNA adduct and mutation in high-fat diet-induced hepatocarcinogenesis by theaphenon e. Cancer Prev Res (Phila) 11:665–676

    Article  Google Scholar 

  • Crespy V, Williamson G (2004) A review of the health effects of green tea catechins in in vivo animal models. J Nutr 134:3431S–3440S

    Article  CAS  PubMed  Google Scholar 

  • Dekant W, Fujii K, Shibata E, Morita O, Shimotoyodome A (2017) Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol Lett 277:104–108

    Article  CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    CAS  PubMed  Google Scholar 

  • Gao YT, McLaughlin JK, Blot WJ, Ji BT, Dai Q, Fraumeni JF Jr (1994) Reduced risk of esophageal cancer associated with green tea consumption. J Natl Cancer Inst 86:855–858

    Article  CAS  PubMed  Google Scholar 

  • Gianfredi V, Nucci D, Abalsamo A, Acito M, Villarini M, Moretti M, Realdon S (2018) Green tea consumption and risk of breast cancer and recurrence-a systematic review and meta-analysis of observational studies. Nutrients 10. https://doi.org/10.3390/nu10121886

  • Godeke J, Maier S, Eichenmuller M, Muller-Hocker J, von Schweinitz D, Kappler R (2013) Epigallocatechin-3-gallate inhibits hepatoblastoma growth by reactivating the wnt inhibitor sfrp1. Nutr Cancer 65:1200–1207

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H (2001) Inhibition of prostate carcinogenesis in tramp mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A 98:10350–10355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Sun Y, Yang CS, Bose M, Lambert JD, Ju J, Lu G, Lee MJ, Park S, Husain A, Wang S (2007) Inhibition of intestinal tumorigenesis in apc(min/+) mice by green tea polyphenols (polyphenon e) and individual catechins. Nutr Cancer 59:62–69

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Xiao H, Ju J, Lee MJ, Lambert JD, Yang CS (2017) Green tea polyphenols inhibit colorectal tumorigenesis in azoxymethane-treated f344 rats. Nutr Cancer 69:623–631

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT (2014) The nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218

    Article  CAS  PubMed  Google Scholar 

  • Henning SM, Yang J, Hsu M, Lee RP, Grojean EM, Ly A, Tseng CH, Heber D, Li Z (2018) Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr 57(8):2759–2769

    Article  CAS  PubMed  Google Scholar 

  • Hong Byun E, Fujimura Y, Yamada K, Tachibana H (2010) Tlr4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kda laminin receptor. J Immunol 185:33–45

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer kyse 150 cells. Cancer Res 65:8049–8056

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Tsai SJ, Wang YJ, Pan MH, Kao JY, Way TD (2009) Egcg inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of ampk in p53 positive and negative human hepatoma cells. Mol Nutr Food Res 53:1156–1165

    Article  CAS  PubMed  Google Scholar 

  • Huang YQ, Lu X, Min H, Wu QQ, Shi XT, Bian KQ, Zou XP (2016) Green tea and liver cancer risk: a meta-analysis of prospective cohort studies in asian populations. Nutrition 32:3–8

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  PubMed  Google Scholar 

  • James KD, Forester SC, Lambert JD (2015) Dietary pretreatment with green tea polyphenol, (−)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (−)-epigallocatechin-3-gallate. Food Chem Toxicol 76:103–108

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Lee JK, Jeon YK, Kim CW (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and m2 polarization. BMC Cancer 13:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju J, Liu Y, Hong J, Huang MT, Conney AH, Yang CS (2003) Effects of green tea and high-fat diet on arachidonic acid metabolism and aberrant crypt foci formation in an azoxymethane-induced colon carcinogenesis mouse model. Nutr Cancer 46:172–178

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J, Yang GY, Liu YY, Hou Z, Lin Y, Ma J, Shih WJ, Carothers AM, Yang CS (2005) Inhibition of intestinal tumorigenesis in apcmin/+ mice by (−)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65:10623–10631

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Mukhtar H (2018) Tea polyphenols in promotion of human health. Nutrients 11. https://doi.org/10.3390/nu11010039

  • Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11:886–895

    Article  CAS  PubMed  Google Scholar 

  • Kumar NB, Pow-Sang J, Egan KM, Spiess PE, Dickinson S, Salup R, Helal M, McLarty JW, Williams CR, Schreiber FMO, Parnes HL, Sebti S, Kazi A, Kang L, Quinn GP, Smith T, Yue B, Diaz K, Chornokur G, Crocker T, Schell MJ (2015) Randomized, placebo-controlled trial of green tea catechins for prostate cancer prevention. Cancer Prev Res (Phila) 8(10):879–887

    Article  CAS  Google Scholar 

  • Kumar NB, Dickinson SI, Schell MJ, Manley BJ, Poch MA, Pow-Sang J (2018) Green tea extract for prevention of prostate cancer progression in patients on active surveillance. Oncotarget 9:37798–37806

    PubMed  PubMed Central  Google Scholar 

  • Kumazoe M, Sugihara K, Tsukamoto S, Huang Y, Tsurudome Y, Suzuki T, Suemasu Y, Ueda N, Yamashita S, Kim Y, Yamada K, Tachibana H (2013) 67-kda laminin receptor increases cgmp to induce cancer-selective apoptosis. J Clin Invest 123:787–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in japan: the ohsaki study. JAMA 296:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and rna as new binding targets of green tea catechins. J Biol Chem 281:17446–17456

    Article  CAS  PubMed  Google Scholar 

  • Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS (2004) Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. J Nutr 134:1948–1952

    Article  CAS  PubMed  Google Scholar 

  • Larsen CA, Dashwood RH, Bisson WH (2010) Tea catechins as inhibitors of receptor tyrosine kinases: mechanistic insights and human relevance. Pharmacol Res 62:457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol Biomark Prev 11:1025–1032

    CAS  Google Scholar 

  • Lee JH, Jeong YJ, Lee SW, Kim D, Oh SJ, Lim HS, Oh HK, Kim SH, Kim WJ, Jung JY (2010) Egcg induces apoptosis in human laryngeal epidermoid carcinoma hep2 cells via mitochondria with the release of apoptosis-inducing factor and endonuclease g. Cancer Lett 290:68–75

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Han DW, Hyon SH, Park JC (2011) Apoptosis of human fibrosarcoma ht-1080 cells by epigallocatechin-3-o-gallate via induction of p53 and caspases as well as suppression of bcl-2 and phosphorylated nuclear factor-kappab. Apoptosis 16:75–85

    Article  CAS  PubMed  Google Scholar 

  • Li N, Sun Z, Han C, Chen J (1999) The chemopreventive effects of tea on human oral precancerous mucosa lesions. Proc Soc Exp Biol Med 220:218–224

    CAS  PubMed  Google Scholar 

  • Li C, Lee MJ, Sheng S, Meng X, Prabhu S, Winnik B, Huang B, Chung JY, Yan S, Ho CT, Yang CS (2000) Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem Res Toxicol 13:177–184

    Article  CAS  PubMed  Google Scholar 

  • Li GX, Chen YK, Hou Z, Xiao H, Jin H, Lu G, Lee MJ, Liu B, Guan F, Yang Z, Yu A, Yang CS (2010) Pro-oxidative activities and dose-response relationship of (−)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: a comparative study in vivo and in vitro. Carcinogenesis 31:902–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang YC, Lin-shiau SY, Chen CF, Lin JK (1997) Suppression of extracellular signals and cell proliferation through egf receptor binding by (−)-epigallocatechin gallate in human a431 epidermoid carcinoma cells. J Cell Biochem 67:55–65

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Hou SC, Chen SC, Kao MC, Yu CC, Funayama S, Ho CT, Way TD (2012) (−)-epigallocatechin gallate induces fas/cd95-mediated apoptosis through inhibiting constitutive and il-6-induced jak/stat3 signaling in head and neck squamous cell carcinoma cells. J Agric Food Chem 60:2480–2489

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu S, Zhou H, Hanson T, Yang L, Chen Z, Zhou M (2016) Association of green tea consumption with mortality from all-cause, cardiovascular disease and cancer in a chinese cohort of 165,000 adult men. Eur J Epidemiol 31:853–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu AB, Tao S, Lee MJ, Hu Q, Meng X, Lin Y, Yang CS (2018) Effects of gut microbiota and time of treatment on tissue levels of green tea polyphenols in mice. Biofactors. https://doi.org/10.1002/biof.1430

  • Lu G, Liao J, Yang G, Reuhl KR, Hao X, Yang CS (2006) Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in a/j mice by tea polyphenols and caffeine. Cancer Res 66:11494–11501

    Article  CAS  PubMed  Google Scholar 

  • Meeran SM, Patel SN, Chan TH, Tollefsbol TO (2011) A novel prodrug of epigallocatechin-3-gallate: differential epigenetic htert repression in human breast cancer cells. Cancer Prev Res 4:1243–1254

    Article  CAS  Google Scholar 

  • Menegazzi M, Mariotto S, Dal Bosco M, Darra E, Vaiana N, Shoji K, Safwat AA, Marechal JD, Perahia D, Suzuki H, Romeo S (2014) Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity. FEBS J 281:724–738

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, Ho CT, Yang CS (2002) Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol 15:1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Meselhy MR, Nakamura N, Hattori M (1997) Biotransformation of (−)-epicatechin 3-o-gallate by human intestinal bacteria. Chem Pharm Bull (Tokyo) 45:888–893

    Article  CAS  Google Scholar 

  • Miyata Y, Shida Y, Hakariya T, Sakai H (2019) Anti-cancer effects of green tea polyphenols against prostate cancer. Molecules 24. https://doi.org/10.3390/molecules24010193

  • Najafi MN, Salehi M, Ghazanfarpour M, Hoseini ZS, Khadem-Rezaiyan M (2018) The association between green tea consumption and breast cancer risk: a systematic review and meta-analysis. Phytother Res 32:1855–1864

    Article  Google Scholar 

  • Nandakumar V, Vaid M, Katiyar SK (2011) (−)-epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, cip1/p21 and p16ink4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32:537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negri A, Naponelli V, Rizzi F, Bettuzzi S (2018) Molecular targets of epigallocatechin-gallate (egcg): a special focus on signal transduction and cancer. Nutrients 10. https://doi.org/10.3390/nu10121936

  • Ni CX, Gong H, Liu Y, Qi Y, Jiang CL, Zhang JP (2017) Green tea consumption and the risk of liver cancer: a meta-analysis. Nutr Cancer 69:211–220

    Article  PubMed  Google Scholar 

  • Oh S, Gwak J, Park S, Yang CS (2014) Green tea polyphenol egcg suppresses wnt/beta-catenin signaling by promoting gsk-3beta- and pp2a-independent beta-catenin phosphorylation/degradation. Biofactors 40:586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawangkan A, Wongsirisin P, Namiki K, Iida K, Kobayashi Y, Shimizu Y, Fujiki H, Suganuma M (2018) Green tea catechin is an alternative immune checkpoint inhibitor that inhibits pd-l1 expression and lung tumor growth. Molecules 23. https://doi.org/10.3390/molecules23082071

  • Roth M, Timmermann BN, Hagenbuch B (2011) Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab Dispos 39:920–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Samavat H, Ursin G, Emory TH, Lee E, Wang R, Torkelson CJ, Dostal AM, Swenson K, Le CT, Yang CS, Yu MC, Yee D, Wu AH, Yuan JM, Kurzer MS (2017) A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev Res (Phila) 10:710–718

    Article  CAS  Google Scholar 

  • Sang S, Lee MJ, Yang I, Buckley B, Yang CS (2008) Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun Mass Spectrom 22:1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Sang S, Lambert JD, Ho CT, Yang CS (2011) The chemistry and biotransformation of tea constituents. Pharmacol Res 64:87–99

    Article  CAS  PubMed  Google Scholar 

  • Sasazuki S, Tamakoshi A, Matsuo K, Ito H, Wakai K, Nagata C, Mizoue T, Tanaka K, Tsuji I, Inoue M, Tsugane S (2012) Green tea consumption and gastric cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the japanese population. Jpn J Clin Oncol 42:335–346

    Article  PubMed  Google Scholar 

  • Schwartz JL, Baker V, Larios E, Chung FL (2005) Molecular and cellular effects of green tea on oral cells of smokers: a pilot study. Mol Nutr Food Res 49:43–51

    Article  CAS  PubMed  Google Scholar 

  • Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA, Roos M, Laumann K, Ghosh AK, Lesnick C, Lee MJ, Yang CS, Jelinek DF, Erlichman C, Kay NE (2013) Phase 2 trial of daily, oral polyphenon e in patients with asymptomatic, rai stage 0 to ii chronic lymphocytic leukemia. Cancer 119:363–370

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Xu C, Hu R, Jain MR, Nair S, Lin W, Yang CS, Chan JY, Kong AN (2005) Comparison of (−)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between c57bl/6j mice and c57bl/6j/nrf2 (−/−) mice. Pharm Res 22:1805–1820

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Su ZY, Chae JI, Kim DJ, Zhu F, Ma WY, Bode AM, Yang CS, Dong Z (2010) Epigallocatechin gallate suppresses lung cancer cell growth through ras-gtpase-activating protein sh3 domain-binding protein 1. Cancer Prev Res 3:670–679

    Article  CAS  Google Scholar 

  • Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB (2005) (−)-epigallocatechin gallate and polyphenon e inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11:2735–2746

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Shirakami Y, Sakai H, Adachi S, Hata K, Hirose Y, Tsurumi H, Tanaka T, Moriwaki H (2008a) (−)-epigallocatechin gallate suppresses azoxymethane-induced colonic premalignant lesions in male c57bl/ksj-db/db mice. Cancer Prev Res 1:298–304

    Article  CAS  Google Scholar 

  • Shimizu M, Fukutomi Y, Ninomiya M, Nagura K, Kato T, Araki H, Suganuma M, Fujiki H, Moriwaki H (2008b) Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study. Cancer Epidemiol Biomark Prev 17:3020–3025

    Article  CAS  Google Scholar 

  • Shimizu M, Adachi S, Masuda M, Kozawa O, Moriwaki H (2011) Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases. Mol Nutr Food Res 55:832–843

    Article  CAS  PubMed  Google Scholar 

  • Shin CM, Lee DH, Seo AY, Lee HJ, Kim SB, Son WC, Kim YK, Lee SJ, Park SH, Kim N, Park YS, Yoon H (2018) Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: a randomized clinical trial. Clin Nutr 37:452–458

    Article  CAS  PubMed  Google Scholar 

  • Shirakami Y, Shimizu M (2018) Possible mechanisms of green tea and its constituents against cancer. Molecules 23:2284

    Article  PubMed Central  CAS  Google Scholar 

  • Singh T, Katiyar SK (2013) Green tea polyphenol, (−)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting beta-catenin signaling. Toxicol Appl Pharmacol 273:418–424

    Article  CAS  PubMed  Google Scholar 

  • Stalmach A, Troufflard S, Serafini M, Crozier A (2009) Absorption, metabolism and excretion of choladi green tea flavan-3-ols by humans. Mol Nutr Food Res 53(Suppl 1):S44–S53

    Article  PubMed  Google Scholar 

  • Stalmach A, Mullen W, Steiling H, Williamson G, Lean ME, Crozier A (2010) Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Mol Nutr Food Res 54:323–334

    Article  CAS  PubMed  Google Scholar 

  • Sun CL, Yuan JM, Lee MJ, Yang CS, Gao YT, Ross RK, Yu MC (2002) Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in shanghai, china. Carcinogenesis 23:1497–1503

    Article  CAS  PubMed  Google Scholar 

  • Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol egcg. Nat Struct Mol Biol 11:380–381

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Wada K, Konishi K, Goto Y, Mizuta F, Koda S, Hori A, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C (2018) Coffee, green tea, and caffeine intake and liver cancer risk: a prospective cohort study. Nutr Cancer 70(8):1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Tang M, Xu L, Luo H, Huang T, Yu J, Zhang L, Gao W, Cox SB, Wang JS (2008) Modulation of aflatoxin biomarkers in human blood and urine by green tea polyphenols intervention. Carcinogenesis 29:411–417

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Forester SC, Lambert JD (2014) The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (−)-epigallocatechin-3-gallate, in oral cells. Mol Nutr Food Res 58:665–676

    Article  CAS  PubMed  Google Scholar 

  • Thakur VS, Gupta K, Gupta S (2012) Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class i histone deacetylases. Int J Oncol 41:353–361

    CAS  PubMed  Google Scholar 

  • Tilg H, Adolph TE, Gerner RR, Moschen AR (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33:954–964

    Article  CAS  PubMed  Google Scholar 

  • Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of mir-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146

    Article  CAS  PubMed  Google Scholar 

  • Tsao AS, Liu D, Martin J, Tang XM, Lee JJ, El-Naggar AK, Wistuba I, Culotta KS, Mao L, Gillenwater A, Sagesaka YM, Hong WK, Papadimitrakopoulou V (2009) Phase ii randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev Res (Phila) 2:931–941

    Article  CAS  Google Scholar 

  • Umeda D, Yano S, Yamada K, Tachibana H (2008) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kda laminin receptor. J Biol Chem 283:3050–3058

    Article  CAS  PubMed  Google Scholar 

  • Urusova DV, Shim JH, Kim DJ, Jung SK, Zykova TA, Carper A, Bode AM, Dong Z (2011) Epigallocatechin-gallate suppresses tumorigenesis by directly targeting pin1. Cancer Prev Res 4:1366–1377

    Article  CAS  Google Scholar 

  • Wang ZY, Hong JY, Huang MT, Reuhl KR, Conney AH, Yang CS (1992) Inhibition of n-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorigenesis in a/j mice by green tea and black tea. Cancer Res 52:1943–1947

    CAS  PubMed  Google Scholar 

  • Wang H, Bian S, Yang CS (2011) Green tea polyphenol egcg suppresses lung cancer cell growth through upregulating mir-210 expression caused by stabilizing hif-1alpha. Carcinogenesis 32:1881–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang X, Liu J, Shen L, Li Z (2014) Tea consumption and lung cancer risk: a meta-analysis of case-control and cohort studies. Nutrition 30:1122–1127

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Wang Y, Wan X, Yang CS, Zhang J (2015) Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the nrf2 rescue pathway. Toxicol Appl Pharmacol 283:65–74

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kan Z, Thompson HJ, Ling T, Ho CT, Li D, Wan X (2018) Impact of six typical processing methods on the chemical composition of tea leaves using a single camellia sinensis cultivar, longjing 43. J Agric Food Chem

    Google Scholar 

  • Weng MW, Lee HW, Park SH, Hu Y, Wang HT, Chen LC, Rom WN, Huang WC, Lepor H, Wu XR, Yang CS, Tang MS (2018) Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A 115:E6152–E6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Hao X, Simi B, Ju J, Jiang H, Reddy BS, Yang CS (2008) Green tea polyphenols inhibit colorectal aberrant crypt foci (acf) formation and prevent oncogenic changes in dysplastic acf in azoxymethane-treated f344 rats. Carcinogenesis 29:113–119

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Lin J, Wang A, Wang Y, Zheng Y, Sang X, Xu Y, Lu X, Zhao H (2017) Tea consumption and the risk of biliary tract cancer: a systematic review and dose-response meta-analysis of observational studies. Oncotarget 8:39649–39657

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ho CT, Amin SG, Han C, Chung FL (1992) Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in a/j mice by green tea and its major polyphenol as antioxidants. Cancer Res 52:3875–3879

    CAS  PubMed  Google Scholar 

  • Yang CS, Hong J (2013) Prevention of chronic diseases by tea: possible mechanisms and human relevance. Annu Rev Nutr 33:161–181

    Article  CAS  PubMed  Google Scholar 

  • Yang JD, Malhi H (2018) Green tea consumption: a potential chemopreventive measure for hepatocellular carcinoma? Hepatology 67:10–12

    Article  PubMed  Google Scholar 

  • Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038–1049

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Wang H (2016) Cancer preventive activities of tea catechins. Molecules 21:1679

    Article  PubMed Central  CAS  Google Scholar 

  • Yang CS, Zhang J (2019) Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses and toxicities. J Agric Food Chem 67(19):5446–5456

    Article  CAS  PubMed  Google Scholar 

  • Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS (1998) Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19:611–616

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Lee MJ, Chen L (1999) Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiol Biomark Prev 8:83–89

    CAS  Google Scholar 

  • Yang CS, Sang S, Lambert JD, Lee MJ (2008) Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res 52(Suppl 1):S139–S151

    PubMed  Google Scholar 

  • Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CS, Wang H, Li GX, Yang Z, Guan F, Jin H (2011) Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res 64:113–122

    Article  CAS  PubMed  Google Scholar 

  • Yates AA, Erdman JW Jr, Shao A, Dolan LC, Griffiths JC (2017) Bioactive nutrients – time for tolerable upper intake levels to address safety. Regul Toxicol Pharmacol 84:94–101

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Samavat H, Dostal AM, Wang R, Torkelson CJ, Yang CS, Butler LM, Kensler TW, Wu AH, Kurzer MS, Yuan JM (2017) Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the united states. Cancer Prev Res (Phila) 10:571–579

    Article  CAS  Google Scholar 

  • Yuan JM, Sun C, Butler LM (2011) Tea and cancer prevention: epidemiological studies. Pharmacol Res 64:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hays A, Noblett A, Thapa M, Hua DH, Hagenbuch B (2013) Transport by oatp1b1 and oatp1b3 enhances the cytotoxicity of epigallocatechin 3-o-gallate and several quercetin derivatives. J Nat Prod 76:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Kaushiva A, Xi Y, Wang T, Li N (2018) Non-herbal tea consumption and ovarian cancer risk: a systematic review and meta-analysis of observational epidemiologic studies with indirect comparison and dose-response analysis. Carcinogenesis 39:808–818

    Article  CAS  PubMed  Google Scholar 

  • Zhao LG, Li HL, Sun JW, Yang Y, Ma X, Shu XO, Zheng W, Xiang YB (2017) Green tea consumption and cause-specific mortality: results from two prospective cohort studies in china. J Epidemiol 27:36–41

    Article  PubMed  Google Scholar 

  • Zhou Q, Li H, Zhou JG, Ma Y, Wu T, Ma H (2016) Green tea, black tea consumption and risk of endometrial cancer: a systematic review and meta-analysis. Arch Gynecol Obstet 293:143–155

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wu W, Wang F, Qi H, Cheng Z (2018) Tea consumption is associated with decreased risk of oral cancer: a comprehensive and dose-response meta-analysis based on 14 case-control studies (moose compliant). Medicine (Baltimore) 97:e13611

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants CA120915, CA122474 and C141756. The author would like to thank Ms. Vi P. Dan for her assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung S. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, C.S. (2020). Cancer Prevention by Tea Polyphenols. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_8

Download citation

Publish with us

Policies and ethics