Skip to main content

Optimized Term Extraction Method Based on Computing Merged Partial C-Values

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2019)

Abstract

Assessing the completeness of a document collection, regarding terminological coverage of a domain of interest, is a complicated task that requires substantial computational resource and human effort. Automated term extraction (ATE) is an important step within this task in our OntoElect approach. It outputs the bags of terms extracted from incrementally enlarged partial document collections for measuring terminological saturation. Saturation is measured iteratively, using our \( thd \) measure of terminological distance between the two bags of terms. The bags of retained significant terms \( T_{i} \) and \( T_{i + 1} \) extracted at i-th and i + 1-st iterations are compared \( (thd(T_{i} ,T_{i + 1} )) \) until it is detected that \( thd \) went below the individual term significance threshold. The flaw of our conventional approach is that the sequence of input datasets is built by adding an increment of several documents to the previous dataset. Hence, the major part of the documents undergoes term extraction repeatedly, which is counter-productive. In this paper, we propose and prove the validity of the optimized pipeline based on the modified C-value method. It processes the disjoint partitions of a collection but not the incrementally enlarged datasets. It computes partial C-values and then merges these in the resulting bags of terms. We prove that the results of extraction are statistically the same for the conventional and optimized pipelines. We support this formal result by evaluation experiments to prove document collection and domain independence. By comparing the run times, we prove the efficiency of the optimized pipeline. We also prove experimentally that the optimized pipeline effectively scales up to process document collections of industrial size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paper is a refined and extended version of [6].

  2. 2.

    In OntoElect, we do not require the availability of this complete collection. Instead, we require that a substantial part of it is available, which presumably contains all the significant terms describing the subject domain. If so, it is further revealed that \( DSC_{sat} \subset CDC \).

  3. 3.

    UPM Term Extractor has been developed in Dr Inventor EU project. It is a Java software for extracting terms and relations from scientific papers: https://github.com/ontologylearning-oeg/epnoi-legacy. The software is available under Apache 2.0 license.

  4. 4.

    For example, the UPM Term Extractor software [43] used in our experiments, which is based on the C-value method, does not take in texts of more than 15 Mb in volume.

  5. 5.

    https://link.springer.com/journal/10618.

  6. 6.

    The increment of 20 papers has been chosen as appropriately granular for the shape of the diagrams in the figures and table length. As we have proven in Corollary 1 to Theorem 1 (Sect. 5), the size of the increment does not influence the result if \( h1 \) holds true.

  7. 7.

    DMKD-300 collection in plain texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-637dc34c-fa29-4587-9f63-df0e602d6e86; incrementally enlarged datasets generated of these texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-b307088c-9479-43fb-8197-a12a66ff685b.

  8. 8.

    The partition of the DMKD-300 collection: https://github.com/OntoElect/Data/blob/master/DMKD-300-DCF-Part.zip.

  9. 9.

    TIME collection in plain texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-d1e5f2b6-c51e-4572-b10d-0e2ebccead02; incrementally enlarged datasets generated of these texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-7f44cddd-2a9b-44ec-9e40-ecedf2a9943e.

  10. 10.

    The partition of the TIME collection: https://github.com/OntoElect/Data/blob/master/TIME-DCF-Part.zip.

  11. 11.

    The full texts were provided by Springer based on their policy on full text provision for data mining purposes: https://www.springer.com/gp/rights-permissions/springer-s-text-and-data-mining-policy/29056. The volume of the KM collection after conversion to plain texts is 413.66 Mb.

  12. 12.

    The increment of 100 papers has been chosen as appropriately granular for the shape of the diagrams in the figures.

  13. 13.

    The partition of the KM collection has not been made publicly available, as it requires additional permissions by Springer.

  14. 14.

    One may argue that the reported experiment was just an experiment with one document collection. Hence, for a different document collection the results might be different regarding the validity of \( h1 \). Our counter-argument was that the computation of С-values is collection- and domain-independent. We proved that in our domain neutrality experiment. Results are the same for a different collection representing a different subject domain.

  15. 15.

    A false positive here and in Fig. 8 is a term candidate string with high C-value, i.e. significance score, but appearing to be not a term for a human expert (domain knowledge stakeholder).

References

  1. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and into the future. ACM Comput. Surv. 44(4) (2012). Article 20, 36 pages. https://doi.org/10.1145/2333112.2333115

    Article  Google Scholar 

  2. Ermolayev, V.: OntoElecting requirements for domain ontologies. The case of time domain. EMISA Int. J. Concept. Model. 13(Sp. Issue), 86–109 (2018). https://doi.org/10.18417/emisa.si.hcm.9

    Article  Google Scholar 

  3. Tatarintseva, O., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying ontology fitness in OntoElect using saturation- and vote-based metrics. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 136–162. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03998-5_8

    Chapter  Google Scholar 

  4. Chugunenko, A., Kosa, V., Popov, R., Chaves-Fraga, D., Ermolayev, V.: Refining terminological saturation using string similarity measures. In: Ermolayev, V., et al. (eds.) ICTERI 2018. Volume I: Main Conference, vol. 2105, pp. 3–18. CEUR-WS (2018). http://ceur-ws.org/Vol-2105/10000003.pdf

  5. Ermolayev, V., Batsakis, S., Keberle, N., Tatarintseva, O., Antoniou, G.: Ontologies of time: review and trends. Int. J. Comput. Sci. Appl. 11(3), 57–115 (2014)

    Google Scholar 

  6. Kosa, V., Chaves-Fraga, D., Dobrovolskyi, H., Fedorenko, E., Ermolayev, V.: Optimizing automated term extraction for terminological saturation measurement. In: Ermolayev, V., et al. (eds.) ICTERI 2019. Volume I: Main Conference, vol. 2387, pp. 1–16. CEUR-WS (2019). http://ceur-ws.org/Vol-2387/20190001.pdf

  7. Kosa, V., et al.: The influence of the order of adding documents to datasets on terminological saturation. Technical report TS-RTDC-TR-2018-2-v2, Department of Computer Science, Zaporizhzhia National University, Ukraine (2018)

    Google Scholar 

  8. Ferrari, A., dell’Orletta, F., Spagnolo, G.O., Gnesi, S.: Measuring and improving the completeness of natural language requirements. In: Salinesi, C., van de Weerd, I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 23–38. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05843-6_3

    Chapter  Google Scholar 

  9. Riazanov, A., Voronkov, A.: Adaptive saturation-based reasoning. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 95–108. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45575-2_11

    Chapter  MATH  Google Scholar 

  10. Chernyak, L., Berenstein, A.: Method and apparatus for informational processing based on creation of term-proximity graphs and their embeddings into informational units. US Patent Application Publication, No US 2006/0031219 A1, 9 February 2006

    Google Scholar 

  11. Doerre, J., Gerstl, P., Goeser, S., Mueller, A., Seiffert, R.: Taxonomy generation for document collections. US Patent, No US 6 446 061 B1, 3 September 2002

    Google Scholar 

  12. Han, H., Xu, S., Zhu, L.: Mining technical topic networks from Chinese patents. In: Jung, H., Mandl, T., Womser-Hacker, C., Xu, S. (eds.) 1st International Workshop on Patent Mining and Its Applications (IPAMIN 2014), Hildesheim, Germany, vol. 1292. CEUR-WS (2014). http://ceur-ws.org/Vol-1292/ipamin2014_paper3.pdf

  13. Aldiabat, K.M.: Data saturation: the mysterious step in Grounded Theory methodology. Qual. Rep. 23(1), 245–261 (2018)

    Google Scholar 

  14. Glaser, B.G., Strauss, A.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine, Chicago (1967)

    Google Scholar 

  15. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–198 (1998)

    Article  Google Scholar 

  16. Zhang, Z., Iria, J., Brewster, C., Ciravegna, F.: A comparative evaluation of term recognition algorithms. In: 6th International Conference on Language Resources and Evaluation, pp. 2108–2113 (2008)

    Google Scholar 

  17. Maynard, D., Bontcheva, K., Augenstein, I.: Natural Language Processing for the Semantic Web. Morgan & Claypool, San Rafael (2017)

    Google Scholar 

  18. Korkontzelos, I., Klapaftis, I.P., Manandhar, S.: Reviewing and evaluating automatic term recognition techniques. In: Nordström, B., Ranta, A. (eds.) GoTAL 2008. LNCS (LNAI), vol. 5221, pp. 248–259. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85287-2_24

    Chapter  Google Scholar 

  19. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  20. Wermter, J., Hahn, U.: Finding new terminology in very large corpora. In: Clark, P., Schreiber, G. (eds.) 3rd International Conference on Knowledge Capture, pp. 137–144. ACM (2005). https://doi.org/10.1145/1088622.1088648

  21. Daille, B.: Study and implementation of combined techniques for automatic extraction of terminology. In: Klavans, J., Resnik, P. (eds.) The Balancing Act: Combining Symbolic and Statistical Approaches to Language, pp. 49–66. The MIT Press, Cambridge (1996)

    Google Scholar 

  22. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Comput. Linguist. 19(1), 61–74 (1993)

    Google Scholar 

  23. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. Bradford Book & MIT Press, Cambridge, London (1999)

    MATH  Google Scholar 

  24. Fahmi, I., Bouma, G., van der Plas, L.: Improving statistical method using known terms for automatic term extraction. In: Computational Linguistics in the Netherlands, CLIN 17 (2007)

    Google Scholar 

  25. Medelyan, O., Witten, I.H.: Thesaurus based automatic keyphrase indexing. In: Marchionini, G., Nelson, M.L., Marshall, C.C. (eds.) ACM/IEEE Joint Conference on Digital Libraries, pp. 296–297. ACM (2006). https://doi.org/10.1145/1141753.1141819

  26. Evans, D.A., Lefferts, R.G.: CLARIT-TREC experiments. Inf. Process. Manage. 31(3), 385–395 (1995). https://doi.org/10.1016/0306-4573(94)00054-7

    Article  Google Scholar 

  27. Ahmad, K., Gillam, L., Tostevin, L.: University of surrey participation in TREC8: weirdness indexing for logical document extrapolation and retrieval (wilder). In: 8th Text Retrieval Conference, TREC-8 (1999)

    Google Scholar 

  28. Church, K.W., Gale, W.A.: Inverse document frequency (IDF): a measure of deviations from Poisson. In: ACL 3rd Workshop on Very Large Corpora, pp. 121–130. Association for Computational Linguistics, Stroudsburg (1995). https://doi.org/10.1007/978-94-017-2390-9_18

    Google Scholar 

  29. Zhang, Z., Gao, J., Ciravegna, F.: Jate 2.0: Java automatic term extraction with Apache Solr. In: LREC 2016, pp. 2262–2269 (2016)

    Google Scholar 

  30. Astrakhantsev, N.: ATR4S: toolkit with state-of-the-art automatic terms recognition methods in scala. arXiv preprint arXiv:1611.07804 (2016)

  31. Sclano, F., Velardi, P.: TermExtractor: a Web application to learn the common terminology of interest groups and research communities. In: 9th Conference on Terminology and Artificial Intelligence, TIA 2007 (2007)

    Google Scholar 

  32. Peñas, A., Verdejo, F., Gonzalo, J.: Corpus-based terminology extraction applied to information access. In: Corpus Linguistics, pp. 458–465 (2001)

    Google Scholar 

  33. Frantzi, K.T., Ananiadou, S.: The C/NC-value domain independent method for multi-word term extraction. J. Nat. Lang. Proc. 6(3), 145–180 (1999). https://doi.org/10.5715/jnlp.6.3_145

    Article  Google Scholar 

  34. Lossio-Ventura, J.A., Jonquet, C., Roche, M., Teisseire, M.: Combining C-value and keyword extraction methods for biomedical terms extraction. In: International Symposium on Languages in Biology and Medicine, pp. 45–49 (2013)

    Google Scholar 

  35. Kozakov, L., Park, Y., Fin, T., Drissi, Y., Doganata, Y., Cofino, T.: Glossary extraction and utilization in the information search and delivery system for IBM Technical Support. IBM Syst. J. 43(3), 546–563 (2004). https://doi.org/10.1147/sj.433.0546

    Article  Google Scholar 

  36. Astrakhantsev, N.: Methods and software for terminology extraction from domain-specific text collection. Ph.D. thesis. Institute for System Programming of Russian Academy of Sciences (2015)

    Google Scholar 

  37. Bordea, G., Buitelaar, P., Polajnar, T.: Domain-independent term extraction through domain modelling. In: 10th International Conference on Terminology and Artificial Intelligence, TIA 2013 (2013)

    Google Scholar 

  38. Badenes-Olmedo, C., Redondo-García, J.L., Corcho, O.: Efficient clustering from distributions over topics. In: K-CAP 2017, article 17, 8 p. ACM, New York (2017)

    Google Scholar 

  39. Park, Y., Byrd, R.J., Boguraev, B.: Automatic glossary extraction: beyond terminology identification. In: 19th International Conference on Computational linguistics, pp. 1–7 (2002). https://doi.org/10.3115/1072228.1072370

  40. Nokel, M., Loukachevitch, N.: An experimental study of term extraction for real information-retrieval thesauri. In: 10th International Conference on Terminology and Artificial Intelligence, pp. 69–76 (2013)

    Google Scholar 

  41. Kim, J.-D., Ohta, T., Teteisi, Y., Tsujii, J.: GENIA corpus - a semantically annotated corpus for bio-textmining. Bioinformatics 19(suppl. 1), i180–i182 (2003). https://doi.org/10.1093/bioinformatics/btg1023

    Article  Google Scholar 

  42. Kosa, V., et al.: Cross-evaluation of automated term extraction tools by measuring terminological saturation. In: Bassiliades, N., et al. (eds.) ICTERI 2017. CCIS, vol. 826, pp. 135–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76168-8_7

    Chapter  Google Scholar 

  43. Corcho, O., Gonzalez, R., Badenes, C., Dong, F.: Repository of indexed ROs. Deliverable No. 5.4. Dr Inventor project (2015)

    Google Scholar 

  44. Chowdhury, F.M., Farrell, R.: An efficient approach for super and nested term indexing and retrieval. arXiv preprint arXiv:1905.09761v1 [cs.DS] (2019)

  45. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd edn. AddisonWesley Longman Publishing Co., Inc., Redwood City (1998)

    Google Scholar 

  46. Lu, C.J., Browne, A.C.: Development of sub-term mapping tools (STMT). In: AMIA 2012 Annual Symposium (2012)

    Google Scholar 

  47. De La Briandais, R.: File searching using variable length keys. In: Western Joint Computer Conference, IRE-AIEE-ACM 1959 (Western), pp. 295–298. ACM (1959)

    Google Scholar 

  48. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18(6), 333–340 (1975)

    Article  MathSciNet  Google Scholar 

  49. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)

    Article  MathSciNet  Google Scholar 

  50. Kosa, V., Chugunenko, A., Yuschenko, E., Badenes, C., Ermolayev, V., Birukou, A.: Semantic saturation in retrospective text document collections. In: Mallet, F., Zholtkevych, G. (eds.) ICTERI 2017 PhD Symposium, vol. 1851, pp. 1–8. CEUR-WS (2017). http://ceur-ws.org/Vol-1851/paper-1.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Kosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosa, V., Chaves-Fraga, D., Dobrovolskyi, H., Ermolayev, V. (2020). Optimized Term Extraction Method Based on Computing Merged Partial C-Values. In: Ermolayev, V., Mallet, F., Yakovyna, V., Mayr, H., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2019. Communications in Computer and Information Science, vol 1175. Springer, Cham. https://doi.org/10.1007/978-3-030-39459-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39459-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39458-5

  • Online ISBN: 978-3-030-39459-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics