Skip to main content

A Critical Appraisal on the Epidemiological Evidence Linking Perinatal Inflammation and Risk of Psychosis

  • Chapter
  • First Online:
Perinatal Inflammation and Adult Psychopathology

Part of the book series: Progress in Inflammation Research ((PIR,volume 84))

  • 457 Accesses

Abstract

Since the dawn of psychiatry as a medical discipline, physicians and researchers struggle with theories that could explain the origin of schizophrenia. Among several hypotheses, perinatal inflammation remains one of great importance not only for the schizophrenia syndrome but also to major neurodevelopmental disorders as autism. In this chapter, a summary of the evidence and relevance to support neuroinflammation as an important factor increasing the risk for schizophrenia is highlighted. The limitations of this theory are discussed together with other synergistic factors that could influence the diathesis of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010; https://doi.org/10.1176/appi.ajp.2009.09030361.

  2. Menninger KA. Influenza and schizophrenia: an analysis of post-influenzal “dementia precox,” as of 1918, and five years later further studies of the psychiatric aspects of influenza. Am J Psychiatry. 1994;151(6 Suppl):182–7.

    CAS  PubMed  Google Scholar 

  3. Van Mierlo HC, Schot A, Boks MPM, De Witte LD. The association between schizophrenia and the immune system : Review of the evidence from unbiased ‘omic-studies’. Schizophr Res. 2019;xxxx. https://doi.org/10.1016/j.schres.2019.05.028.

  4. Kneeland RE, Fatemi SH. NIH public access. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;5(42):35–48. https://doi.org/10.1016/j.pnpbp.2012.02.001.Viral.

    Article  Google Scholar 

  5. Barron H, Hafizi S, Andreazza AC, Mizrahi R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int J Mol Sci. 2017;18(651):1–13. https://doi.org/10.3390/ijms18030651.

    Article  CAS  Google Scholar 

  6. Köhler-forsberg O, Petersen L, Gasse C, et al. A Nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA Psychiat. 2018; https://doi.org/10.1001/jamapsychiatry.2018.3428.

  7. Brown AS. Prenatal Infection as a risk factor for schizophrenia. Schizophr Bull. 2006;32(2):200–2. https://doi.org/10.1093/schbul/sbj052.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krause D, Matz J, Weidinger E, et al. The association of infectious agents and schizophrenia. World J Biol Psychiatry. 2010; https://doi.org/10.3109/15622971003653246.

  9. Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and toxoplasma gondii. Schizophr Bull. 2009;35(6):1163–82. https://doi.org/10.1093/schbul/sbn054.

    Article  CAS  PubMed  Google Scholar 

  10. Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res. 2010;122(1–3):38–42. https://doi.org/10.1016/j.schres.2010.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carter CJ. Schizophrenia: a Pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes. J Pathog. 2011;2011:1–37. https://doi.org/10.4061/2011/128318.

    Article  Google Scholar 

  12. Makinodan M, Tatsumi K, Manabe T, et al. Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. J Neurosci Res. 2008;86(10):2190–200. https://doi.org/10.1002/jnr.21673.

    Article  CAS  PubMed  Google Scholar 

  13. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza Infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2018; https://doi.org/10.1523/jneurosci.23-01-00297.2003.

  14. Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011;585(23):3798–80. https://doi.org/10.1016/j.febslet.2011.08.033.

    Article  CAS  PubMed  Google Scholar 

  15. Patterson P. Brain–immune connections, stress, and depression. In: Patterson P, editor. Brain– immune connections in autism, schizophrenia, and depression. Boston: MIT Press; 2011. p. 10–28.

    Google Scholar 

  16. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42:1–8. https://doi.org/10.1203/00006450-199707000-00001.

    Article  CAS  PubMed  Google Scholar 

  17. Brown AS, Derkits EJ. Prenatal Infection and Schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2013;167(3):261–80. https://doi.org/10.1176/appi.ajp.2009.09030361.Prenatal.

    Article  Google Scholar 

  18. Csernansky JG. Neurodegeneration in schizophrenia: evidence from in vivo neuroimaging studies. Sci World J. 2007;7:135–43. https://doi.org/10.1100/tsw.2007.47.

    Article  Google Scholar 

  19. Meyer U. Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:20–34. https://doi.org/10.1016/j.pnpbp.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  20. Meyer U, Feldon J, Schedlowski M, Yee BK. Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev. 2005;29(6):913–47. https://doi.org/10.1016/j.neubiorev.2004.10.012.

    Article  CAS  PubMed  Google Scholar 

  21. Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res. 2005;39(3):311–23. https://doi.org/10.1016/j.jpsychires.2004.08.008.

    Article  PubMed  Google Scholar 

  22. Gilmore JH, Jarskog LF. Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res. 2002;24:365–7. https://doi.org/10.1016/s0920-9964(96)00123-5.

    Article  Google Scholar 

  23. Kim YK, Myint AM, Verkerk R, Scharpe S, Steinbusch H, Leonard B. Cytokine changes and tryptophan metabolites in medication-naïve and medication-free schizophrenic patients. Neuropsychobiology. 2009;59(2):123–9. https://doi.org/10.1159/000213565.

    Article  CAS  PubMed  Google Scholar 

  24. Brown AS, Hooton J, Schaefer CA, et al. Elevated maternal Interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004;161:889–95. https://doi.org/10.1176/appi.ajp.161.5.889.

    Article  PubMed  Google Scholar 

  25. Khler AK, Djurovic S, Rimol LM, et al. Candidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area. Biol Psychiatry. 2011;69(1):90–6. https://doi.org/10.1016/j.biopsych.2010.07.035.

    Article  CAS  Google Scholar 

  26. Baud O, Emilie D, Pelletier E, et al. Amniotic fluid concentrations of interleukin-1β, Interleukin-6 and TNF-α in chorioamnionitis before 32 weeks of gestation: histological associations and neonatal outcome. Br J Obstet Gynaecol. 1999;106:72–7. https://doi.org/10.1111/j.1471-0528.1999.tb08088.x.

    Article  CAS  PubMed  Google Scholar 

  27. O’Brien SM, Scully P, Dinan TG. Increased tumor necrosis factor-alpha concentrations with interleukin-4 concentrations in exacerbations of schizophrenia. Psychiatry Res. 2008;160(3):256–62. https://doi.org/10.1016/j.psychres.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  28. Meyer U. Anti-inflammatory signaling in schizophrenia. Brain Behav Immun. 2011;42:20–34. https://doi.org/10.1016/j.bbi.2011.05.014.

    Article  CAS  Google Scholar 

  29. Barr CE, Mednick SA, Munk Jorgensen P. Exposure to influenza epidemics during gestation and adult schizophrenia: a 40-year study. Arch Gen Psychiatry. 1990;47:869–74. https://doi.org/10.1001/archpsyc.1990.01810210077012.

    Article  CAS  PubMed  Google Scholar 

  30. Feigenson KA, Kusnecov AW, Silverstein SM. NIH public access. Neurosci Biobehav Rev. 2015;38:72–93. https://doi.org/10.1016/j.neubiorev.2013.11.006.Inflammation.

    Article  Google Scholar 

  31. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through Interleukin-6. J Neurosci. 2007;27:10695–702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev. 2016; https://doi.org/10.1155/2016/7432797.

  33. Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev. 2004;18:2195–224. https://doi.org/10.1101/gad.1228704.

    Article  CAS  PubMed  Google Scholar 

  34. Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35:878–93. https://doi.org/10.1016/j.neubiorev.2010.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69. https://doi.org/10.1038/nrn2038.

    Article  CAS  PubMed  Google Scholar 

  36. Lanté F, Meunier J, Guiramand J, et al. Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus. 2008;18:602–9. https://doi.org/10.1002/hipo.20421.

    Article  CAS  PubMed  Google Scholar 

  37. Lanté F, Meunier J, Guiramand J, et al. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic Biol Med. 2007;42:1231–45. https://doi.org/10.1016/j.freeradbiomed.2007.01.027.

    Article  CAS  PubMed  Google Scholar 

  38. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32. https://doi.org/10.1038/nrn.2016.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krystal JH. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry. 2011;51:199–214. https://doi.org/10.1001/archpsyc.1994.03950030035004.

    Article  Google Scholar 

  40. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74. https://doi.org/10.1016/S1474-4422(10)70253-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr Bull. 2009;35:549–62. https://doi.org/10.1093/schbul/sbp006.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kapur S, Mizrahi R, Li M. From dopamine to salience to psychosis-linking biology, pharmacology and phenomenology of psychosis. Schizophr Res. 2005;79:59–68. https://doi.org/10.1016/j.schres.2005.01.003.

    Article  PubMed  Google Scholar 

  43. Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17:125–34. https://doi.org/10.1038/nrn.2015.19.

    Article  CAS  PubMed  Google Scholar 

  44. Hoftman GD, Datta D, Lewis DA. Layer 3 excitatory and inhibitory circuitry in the prefrontal cortex: developmental trajectories and alterations in schizophrenia. Biol Psychiatry. 2017;81(10):862–73. https://doi.org/10.1016/j.biopsych.2016.05.022.

    Article  PubMed  Google Scholar 

  45. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21. https://doi.org/10.1016/j.neuron.2004.09.012.

    Article  CAS  PubMed  Google Scholar 

  46. Wang CZ, Yang SF, Xia Y, Johnson KM. Postnatal phencyclidine administration selectively reduces adult cortical parvalbumin-containing interneurons. Neuropsychopharmacology. 2008;33:2442–54. https://doi.org/10.1038/sj.npp.1301647.

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Pinto-Duarte A, Sejnowski TJ, Behrens MM. How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxid Redox Signal. 2013;13:1444–62. https://doi.org/10.1089/ars.2012.4907.

    Article  CAS  Google Scholar 

  48. Gulyás AI, Megías M, Emri Z, Freund TF. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci. 1999;19:10082–97.

    Article  Google Scholar 

  49. Sullivan EM, O’Donnell P. Inhibitory interneurons, oxidative stress, and schizophrenia. Schizophr Bull. 2012;38:373–6. https://doi.org/10.1093/schbul/sbs052.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meyer U, Yee BK, Feldon J. The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist. 2016;13(3):241–56. https://doi.org/10.1177/1073858406296401.

    Article  CAS  Google Scholar 

  51. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2012;43(2):239–57. https://doi.org/10.1017/S0033291712000736.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Depino AM. Perinatal inflammation and adult psychopathology: from preclinical models to humans. Semin Cell Dev Biol. 2017:1–37. https://doi.org/10.1016/j.semcdb.2017.09.010.

  53. Labouesse MA, Langhans W, Meyer U. Long-term pathological consequences of prenatal infection: beyond brain disorders. Am J Physiol Regul Integr Comp Physiol. 2015;309(1):R1–R12. https://doi.org/10.1152/ajpregu.00087.2015.

    Article  CAS  PubMed  Google Scholar 

  54. Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: mouse genetics, 22q11.2 deletion syndrome, and disorders of cortical circuit development. Prog Neurobiol. 2015;130(1–28). https://doi.org/10.1016/j.pneurobio.2015.03.004

  55. Frecska E, Szabo A, Winkelman MJ, Luna LE, McKenna DJ. A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. J Neural Transm (Vienna). 2013;120(9):1295–303. https://doi.org/10.1007/s00702-013-1024-y.

    Article  CAS  Google Scholar 

  56. Monte AS, Mello BSF, Borella VCM, da Silva Araújo T, da Silva FER, de Sousa FCF, et al. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats_ study of sex differences and brain oxidative alterations. Behav Brain Res. 2017;331:30–7. https://doi.org/10.1016/j.bbr.2017.04.057.

    Article  CAS  PubMed  Google Scholar 

  57. Keshavan MS, Nasrallah HA, Tandon R. Schizophrenia, “just the facts” 6. Moving ahead with the schizophrenia concept: from the elephant to the mouse. Schizophr Res. 2011;127(1–3):3–13. https://doi.org/10.1016/j.schres.2011.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, et al. Neuroinflammation and Infection: molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol. 2017;7:1–17. https://doi.org/10.3389/fcimb.2017.00276.

    Article  CAS  Google Scholar 

  59. Stegmayer K, Strik W, Federspiel A, Wiest R, Bohlhalter S, Walther S. Specific cerebral perfusion patterns in three schizophrenia symptom dimensions. Schizophr Res. 2017;190(1–6) https://doi.org/10.1016/j.schres.2017.03.018.

  60. Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia_ clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol. 2014;24(5):645–92. https://doi.org/10.1016/j.euroneuro.2014.03.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David De Lucena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanders, L., Gabler, F., De Lucena, D. (2020). A Critical Appraisal on the Epidemiological Evidence Linking Perinatal Inflammation and Risk of Psychosis. In: Teixeira, A.L., Macedo, D., Baune, B.T. (eds) Perinatal Inflammation and Adult Psychopathology. Progress in Inflammation Research, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-39335-9_8

Download citation

Publish with us

Policies and ethics