Skip to main content

A Review on Multiple Purely Imaginary Spectral Values of Time-Delay Systems

  • Chapter
  • First Online:
  • 402 Accesses

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 9))

Abstract

A standard framework in analyzing time-delay systems consists first, in identifying the associated crossing roots and secondly, then, in characterizing the local bifurcations of such roots with respect to small variations of the system parameters. Moreover, the dynamics of such spectral values are strongly related to their multiplicities (algebraic/geometric). This chapter review some new results by the authors from Boussaada and Niculescu (IEEE Trans Autom Control 61:1601–1606, [1]), Boussaada and Niculescu (Acta Applicandæ Mathematicæ 145(1):47–88, [2]), Boussaada and Niculescu (Proceeding of the 21st International Symposium on Mathematical Theory of Networks and Systems, pp. 1–8, [3]) allowing one to characterize the algebraic multiplicity of a quasipolynomial’s crossing imaginary roots. First, we emphasize the link between the multiplicity characterization and functional Birkhoff matrices. Secondly, we elaborate a constructive bound for the multiplicity of a given crossing imaginary root. It is shown that Pólya-Szegő generic bound is never reached when the crossing frequency is different from zero.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An equilibrium point is called a Hopf point if the Jacobian at that point has a conjugate pair of purely imaginary spectral values \(\pm i\omega \), \(\omega > 0\). If there are two such pairs \(\pm i\omega _1, \pm i\omega _2\) then it is called a double Hopf point. If additionally, \(\omega _1=\omega _2\) then it is called a 1:1 resonant double Hopf point.

References

  1. Boussaada, I., Niculescu, S.I.: Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: a Vandermonde-based approach. IEEE Trans. Autom. Control. 61, 1601–1606 (2016)

    Article  MathSciNet  Google Scholar 

  2. Boussaada, I., Niculescu, S.-I.: Characterizing the codimension of zero singularities for time-delay systems. Acta Applicandæ Mathematicæ 145(1), 47–88 (2016)

    Article  MathSciNet  Google Scholar 

  3. Boussaada, I., Niculescu, S.-I.: Computing the codimension of the singularity at the origin for delay systems: the missing link with Birkhoff incidence matrices. In: Proceeding of the 21st International Symposium on Mathematical Theory of Networks and Systems, pp. 1–8 (2014)

    Google Scholar 

  4. Dellnitz, M., Werner, B.: Computational methods for bifurcation problems with symmetries-with special attention to steady state and Hopf bifurcation points. J. Comput. Appl. Math. 26(1–2), 97–123 (1989)

    Article  MathSciNet  Google Scholar 

  5. Steindl, A., Troger, H.: Bifurcations of the equilibrium of a spherical double pendulum at a multiple eigenvalue. In: Küpper, T., Seydel, R., Troger, H. (eds.) Bifurcation: Analysis, Algorithms, Applications, vol. 79 of ISNM 79, pp. 277–287. Birkhäuser, Basel (1987)

    Chapter  Google Scholar 

  6. Zhang, C., Zheng, B., Wang, L.: Multiple hopf bifurcations of symmetric BAM neural network model with delay. Appl. Math. Lett. 22(4), 616–622 (2009)

    Article  MathSciNet  Google Scholar 

  7. Hale, J.K., Huang, W.: Period doubling in singularly perturbed delay equations. J. Diff. Eq. 114, 1–23 (1994)

    Article  MathSciNet  Google Scholar 

  8. Boussaada, I., Mounier, H., Niculescu, S.-I., Cela, A.: Analysis of drilling vibrations: a time-delay system approach. In: Proceedings of the 20th Mediterranean Conference on Control and Automation, pp. 1–5 (2012)

    Google Scholar 

  9. Marquez, M.S., Boussaada, I., Mounier, H., Niculescu, S.-I.: Analysis and Control of Oilwell Drilling Vibrations. Advances in Industrial Control. Springer, Berlin (2015)

    Google Scholar 

  10. Campbell, S., Yuan, Y.: Zero singularities of codimension two and three in delay differential equations. Nonlinearity 22(11), 2671 (2008)

    Article  MathSciNet  Google Scholar 

  11. Boussaada, I., Morarescu, I.-C., Niculescu, S.-I.: Inverted pendulum stabilization: characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains. Syst. Control Lett. 82, 1–9 (2015)

    Article  MathSciNet  Google Scholar 

  12. Diekmann, O., Gils, S.V., Lunel, S.V., Walther, H.: Delay Equations. Applied Mathematical Sciences, Functional, Complex, and Nonlinear Analysis, vol. 110. Springer, New York (1995)

    Google Scholar 

  13. Bellman, R., Cooke, K.: Differential-difference Equations. Academic Press, New York (1963)

    Article  Google Scholar 

  14. Ahlfors, L.V.: Complex Analysis. McGraw-Hill, Inc., New York (1979)

    Google Scholar 

  15. Levin, B.: Distribution of Zeros of Entire Functions. Translations of Mathematical Monographs. AMS, Providence, Rhode Island (1964)

    Google Scholar 

  16. Michiels, W., Niculescu, S.-I.: Stability and Stabilization of Time-Delay Systems, Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), vol. 12 (2007)

    Google Scholar 

  17. Pólya, G., Szegő, G.: Problems and Theorems in Analysis, vol. I: Series, Integral Calculus, Theory of Functions. Springer, New York (1972)

    Chapter  Google Scholar 

  18. Carr, J.: Application of Center Manifold Theory. Springer, Berlin (1981)

    Google Scholar 

  19. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer, Berlin (2002)

    Google Scholar 

  20. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Applied Mathematics Sciences, Vol. 112, 2nd edn. Springer, New York (1998)

    Google Scholar 

  21. Wielonsky, F.: A Rolle’s theorem for real exponential polynomials in the complex domain. J. Math. Pures Appl. 4, 389–408 (2001)

    Article  MathSciNet  Google Scholar 

  22. Björck, A., Elfving, T.: Algorithms for confluent Vandermonde systems. Numer. Math. 21, 130–137 (1973)

    Article  MathSciNet  Google Scholar 

  23. Gautshi, W.: On inverses of Vandermonde and confluent Vandermonde matrices. Numer. Math. 4, 117–123 (1963)

    Article  MathSciNet  Google Scholar 

  24. Gautshi, W.: On inverses of Vandermonde and confluent Vandermonde matrices II. Numer. Math. 5, 425–430 (1963)

    Article  MathSciNet  Google Scholar 

  25. Gonzalez-Vega, L.: Applying quantifier elimination to the Birkhoff interpolation problem. J. Symb. Comp. 22(1), 83–104 (1996)

    Article  MathSciNet  Google Scholar 

  26. Kailath, T.: Linear Systems. Prentice-Hall information and system sciences series. Prentice Hall International, Upper Saddle River (1998)

    Google Scholar 

  27. Niculescu, S.-I., Michiels, W.: Stabilizing a chain of integrators using multiple delays. IEEE Trans. Aut. Cont. 49(5), 802–807 (2004)

    Article  MathSciNet  Google Scholar 

  28. Lorentz, G., Zeller, K.: Birkhoff interpolation. SIAM J. Numer. Anal. 8(1), 43–48 (1971)

    Article  MathSciNet  Google Scholar 

  29. Rouillier, F., Din, M., Schost, E.: Solving the Birkhoff interpolation problem via the critical point method: an experimental study. In: Richter-Gebert, J., Wang, D. (eds.) Automated Deduction in Geometry, vol. 2061 of LNCS, pp. 26–40. Springer, Berlin (2001)

    Chapter  Google Scholar 

  30. Ha, T., Gibson, J.: A note on the determinant of a functional confluent Vandermonde matrix and controllability. Linear Algebr. Appl. 30, 69–75 (1980)

    Article  MathSciNet  Google Scholar 

  31. Olver, P.: On multivariate interpolation. Stud. Appl. Math. 116, 201–240 (2006)

    Article  MathSciNet  Google Scholar 

  32. Melkemi, L., Rajeh, F.: Block lu-factorization of confluent Vandermonde matrices. Appl. Math. Lett. 23(7), 747–750 (2010)

    Article  MathSciNet  Google Scholar 

  33. Respondek, J.S.: On the confluent Vandermonde matrix calculation algorithm. App. Math. Lett. 24(2), 103–106 (2011)

    Article  MathSciNet  Google Scholar 

  34. Hou, S.-H., Pang, W.-K.: Inversion of confluent Vandermonde matrices. Comput. Math. Appl. 43(12), 1539–1547 (2002)

    Article  MathSciNet  Google Scholar 

  35. Oruc, H.: Factorization of the Vandermonde matrix and its applications. Appl. Math. Lett. 20(9), 982–987 (2007)

    Article  MathSciNet  Google Scholar 

  36. Melkemi, L.: Confluent Vandermonde matrices using Sylvester’s structures. Research Report of the Ecole Normale Supérieure de Lyon 98–16, 1–14 (1998)

    Google Scholar 

  37. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, New York (2007)

    Google Scholar 

  38. Shafarevich, I., Remizov, A.: Matrices and determinants. In Linear Algebra and Geometry, pp. 25–77. Springer, Berlin (2013)

    Chapter  Google Scholar 

  39. Atay, F.M.: Balancing the inverted pendulum using position feedback. Appl. Math. Lett. 12(5), 51–56 (1999)

    Article  MathSciNet  Google Scholar 

  40. Sieber, J., Krauskopf, B.: Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity 17, 85–103 (2004)

    Article  MathSciNet  Google Scholar 

  41. Sieber, J., Krauskopf, B.: Extending the permissible control loop latency for the controlled inverted pendulum. Dyn. Syst. 20(2), 189–199 (2005)

    Article  MathSciNet  Google Scholar 

  42. Boussaada, I., Irofti, D., Niculescu, S.-I.: Computing the codimension of the singularity at the origin for time-delay systems in the regular case: A Vandermonde-based approach. In: Proceedings of the 13th European Control Conference, pp. 1–6 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam Boussaada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boussaada, I., Niculescu, SI. (2020). A Review on Multiple Purely Imaginary Spectral Values of Time-Delay Systems. In: Quadrat, A., Zerz, E. (eds) Algebraic and Symbolic Computation Methods in Dynamical Systems. Advances in Delays and Dynamics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-38356-5_9

Download citation

Publish with us

Policies and ethics