Skip to main content

Proteostasis Dysregulation in Pancreatic Cancer

  • Chapter
  • First Online:
Proteostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1233))

Abstract

The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin–proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    Article  PubMed  Google Scholar 

  3. Collisson EA, Bailey P, Chang DK et al (2019) Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol 16:207–220

    Article  PubMed  Google Scholar 

  4. Durlik M, Tuchalska-Czuron J (2014) Ploidy and DNA index as prognostic factors in resected pancreatic ductal adenocarcinoma—review of the literature. Prz Gastroenterol 9:313–316

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049

    Article  CAS  PubMed  Google Scholar 

  6. Mann KM, Ying H, Juan J et al (2016) KRAS-related proteins in pancreatic cancer. Pharmacol Ther 168:29–42

    Article  CAS  PubMed  Google Scholar 

  7. Andersen DK, Korc M, Petersen GM et al (2017) Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes 66:1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bosetti C, Rosato V, Li D et al (2014) Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol 25:2065–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirkegard J, Mortensen FV, Cronin-Fenton D (2017) Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol 112:1366–1372

    Article  PubMed  Google Scholar 

  10. Koyanagi YN, Matsuo K, Ito H et al (2018) Body-mass index and pancreatic cancer incidence: a pooled analysis of nine population-based cohort studies with more than 340,000 Japanese subjects. J Epidemiol 28:245–252

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pang Y, Kartsonaki C, Guo Y et al (2017) Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 140:1781–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunovsky L, Tesarikova P, Kala Z et al (2018) The use of biomarkers in early diagnostics of pancreatic cancer. Can J Gastroenterol Hepatol 2018:5389820

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seppanen H, Juuti A, Mustonen H et al (2017) The results of pancreatic resections and long-term survival for pancreatic ductal adenocarcinoma: a single-institution experience. Scand J Surg 106:54–61

    Article  CAS  PubMed  Google Scholar 

  14. Valle S, Martin-Hijano L, Alcala S et al (2018) The ever-evolving concept of the cancer stem cell in pancreatic cancer. Cancers (Basel) 10:E33

    Article  CAS  Google Scholar 

  15. Kleeff J, Korc M, Apte M et al (2016) Pancreatic cancer. Nat Rev Dis Primers 2:16022

    Article  PubMed  Google Scholar 

  16. Konstantinidis IT, Warshaw AL, Allen JN et al (2013) Pancreatic ductal adenocarcinoma: is there a survival difference for R1 resections versus locally advanced unresectable tumors? What is a “true” R0 resection? Ann Surg 257:731–736

    Article  PubMed  Google Scholar 

  17. Neoptolemos JP, Kleeff J, Michl P et al (2018) Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol 15:333–348

    Article  PubMed  Google Scholar 

  18. Lockhart AC, Rothenberg ML, Berlin JD (2005) Treatment for pancreatic cancer: current therapy and continued progress. Gastroenterology 128:1642–1654

    Article  CAS  PubMed  Google Scholar 

  19. Gomez VE, Giovannetti E, Peters GJ (2015) Unraveling the complexity of autophagy: potential therapeutic applications in pancreatic ductal adenocarcinoma. Semin Cancer Biol 35:11–19

    Article  CAS  PubMed  Google Scholar 

  20. Basturk O, Hong SM, Wood LD et al (2015) A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol 39:1730–1741

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hruban RH, Takaori K, Klimstra DS et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28:977–987

    Article  PubMed  Google Scholar 

  22. Yachida S, Jones S, Bozic I et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biancur DE, Kimmelman AC (2018) The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 1870:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maitra A, Kern SE, Hruban RH (2006) Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 20:211–226

    Article  CAS  PubMed  Google Scholar 

  25. Ansari D, Toren W, Zhou Q et al (2019) Proteomic and genomic profiling of pancreatic cancer. Cell Biol Toxicol 35(4):333–343

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caldas C, Kern SE (1995) K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol 18:1–6

    CAS  PubMed  Google Scholar 

  27. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science (New York, NY) 321:1801–1806

    Article  CAS  Google Scholar 

  28. Jones S, Hruban RH, Kamiyama M et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science (New York, NY) 324:217

    Article  CAS  Google Scholar 

  29. Hu ZI, Shia J, Stadler ZK et al (2018) Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res 24:1326–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dunne RF, Hezel AF (2015) Genetics and biology of pancreatic ductal adenocarcinoma. Hematol Oncol Clin North Am 29:595–608

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sidaway P (2017) Pancreatic cancer: TCGA data reveal a highly heterogeneous disease. Nat Rev Clin Oncol 14:648

    PubMed  Google Scholar 

  32. Brune KA, Lau B, Palmisano E et al (2010) Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst 102:119–126

    Article  PubMed  PubMed Central  Google Scholar 

  33. Klein AP, Brune KA, Petersen GM et al (2004) Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 64:2634–2638

    Article  CAS  PubMed  Google Scholar 

  34. Petersen GM (2016) Familial pancreatic cancer. Semin Oncol 43:548–553

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grant RC, Selander I, Connor AA et al (2015) Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 148:556–564

    Article  CAS  PubMed  Google Scholar 

  36. Shindo K, Yu J, Suenaga M et al (2017) Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 35:3382–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Collisson EA, Trejo CL, Silva JM et al (2012) A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eser S, Reiff N, Messer M et al (2013) Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23:406–420

    Article  CAS  PubMed  Google Scholar 

  39. Feldmann G, Mishra A, Hong SM et al (2010) Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res 70:4460–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim KH, Baines AT, Fiordalisi JJ et al (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7:533–545

    Article  CAS  PubMed  Google Scholar 

  41. Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52

    Article  CAS  PubMed  Google Scholar 

  42. Erkan M, Hausmann S, Michalski CW et al (2012) The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9:454–467

    Article  CAS  PubMed  Google Scholar 

  43. Ren B, Cui M, Yang G et al (2018) Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer 17:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Martinez-Outschoorn UE, Trimmer C, Lin Z et al (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell cycle (Georgetown, Tex) 9:3515–3533

    Article  CAS  Google Scholar 

  45. Abel EV, Simeone DM (2013) Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 144:1241–1248

    Article  PubMed  Google Scholar 

  46. Sancho P, Alcala S, Usachov V et al (2016) The ever-changing landscape of pancreatic cancer stem cells. Pancreatology 16:489–496

    Article  PubMed  Google Scholar 

  47. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  48. Padoan A, Plebani M, Basso D (2019) Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci 20(3):E676

    Article  PubMed  CAS  Google Scholar 

  49. DuFort CC, DelGiorno KE, Hingorani SR (2016) Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology 150:1545–1557.e2

    Article  PubMed  Google Scholar 

  50. Erkan M, Kurtoglu M, Kleeff J (2016) The role of hypoxia in pancreatic cancer: a potential therapeutic target? Expert Rev Gastroenterol Hepatol 10:301–316

    Article  CAS  PubMed  Google Scholar 

  51. Vonderheide RH, Bayne LJ (2013) Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr Opin Immunol 25:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rhim AD, Mirek ET, Aiello NM et al (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bellone G, Turletti A, Artusio E et al (1999) Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol 155:537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moo-Young TA, Larson JW, Belt BA et al (2009) Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J Immunother 32:12–21

    Article  CAS  PubMed  Google Scholar 

  55. Principe DR, DeCant B, Mascarinas E et al (2016) TGFbeta signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res 76:2525–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yako YY, Kruger D, Smith M et al (2016) Cytokines as biomarkers of pancreatic ductal adenocarcinoma: a systematic review. PLoS One 11:e0154016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Clark CE, Hingorani SR, Mick R et al (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67:9518–9527

    Article  CAS  PubMed  Google Scholar 

  58. Sakaguchi S, Sakaguchi N, Shimizu J et al (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32

    Article  CAS  PubMed  Google Scholar 

  59. Duffy MJ, Sturgeon C, Lamerz R et al (2010) Tumor markers in pancreatic cancer: a European group on tumor markers (EGTM) status report. Ann Oncol 21:441–447

    Article  CAS  PubMed  Google Scholar 

  60. Poruk KE, Gay DZ, Brown K et al (2013) The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med 13:340–351

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Goggins M (2005) Molecular markers of early pancreatic cancer. J Clin Oncol 23:4524–4531

    Article  CAS  PubMed  Google Scholar 

  62. Kaur S, Baine MJ, Jain M et al (2012) Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med 6:597–612

    Article  CAS  PubMed  Google Scholar 

  63. Locker GY, Hamilton S, Harris J et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24:5313–5327

    Article  CAS  PubMed  Google Scholar 

  64. Van Sciver RE, Lee MP, Lee CD et al (2018) A new strategy to control and eradicate “undruggable” oncogenic K-RAS-driven pancreatic cancer: molecular insights and core principles learned from developmental and evolutionary biology. Cancers (Basel) 10(5):142

    Article  CAS  Google Scholar 

  65. Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843:182–196

    Article  CAS  PubMed  Google Scholar 

  66. Wang D, Ma L, Wang B et al (2017) E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 36:683–702

    Article  CAS  PubMed  Google Scholar 

  67. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    Article  CAS  PubMed  Google Scholar 

  68. Tsou WL, Sheedlo MJ, Morrow ME et al (2012) Systematic analysis of the physiological importance of deubiquitinating enzymes. PLoS One 7:e43112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C et al (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26:869–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96

    Article  CAS  PubMed  Google Scholar 

  71. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695:19–31

    Article  CAS  PubMed  Google Scholar 

  72. Sledz P, Unverdorben P, Beck F et al (2013) Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110:7264–7269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    Article  PubMed  Google Scholar 

  74. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  75. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  76. Galluzzi L, Pietrocola F, Bravo-San Pedro JM et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Furuyama T, Tanaka S, Shimada S et al (2016) Proteasome activity is required for the initiation of precancerous pancreatic lesions. Sci Rep 6:27044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bakke J, Wright WC, Zamora AE et al (2019) Genome-wide CRISPR screen reveals PSMA6 to be an essential gene in pancreatic cancer cells. BMC Cancer 19:253

    Article  PubMed  PubMed Central  Google Scholar 

  79. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V et al (2005) Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129:1454–1463

    Article  CAS  PubMed  Google Scholar 

  80. Ni XG, Zhou L, Wang GQ et al (2008) The ubiquitin-proteasome pathway mediates gelsolin protein downregulation in pancreatic cancer. Mol Med 14:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer Genome Atlas Research N (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32:185–203.e13

    Article  CAS  Google Scholar 

  82. Jiang X, Hao HX, Growney JD et al (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 110:12649–12654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang D, Tan J, Xu Y et al (2016) The ubiquitin ligase RNF43 downregulation increases membrane expression of frizzled receptor in pancreatic ductal adenocarcinoma. Tumour Biol 37:627–631

    Article  PubMed  CAS  Google Scholar 

  84. Furukawa T, Kuboki Y, Tanji E et al (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wu J, Jiao Y, Dal Molin M et al (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA 108:21188–21193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koo BK, Spit M, Jordens I et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–669

    Article  CAS  PubMed  Google Scholar 

  87. Shinada K, Tsukiyama T, Sho T et al (2011) RNF43 interacts with NEDL1 and regulates p53-mediated transcription. Biochem Biophys Res Commun 404:143–147

    Article  CAS  PubMed  Google Scholar 

  88. Muerkoster S, Arlt A, Sipos B et al (2005) Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 65:1316–1324

    Article  PubMed  Google Scholar 

  89. Chen C, Matesic LE (2007) The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastasis Rev 26:587–604

    Article  CAS  PubMed  Google Scholar 

  90. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381

    Article  CAS  PubMed  Google Scholar 

  91. Weng M, Luo ZL, Wu XL et al (2017) The E3 ubiquitin ligase NEDD4 is translationally upregulated and facilitates pancreatic cancer. Oncotarget 8:20288–20296

    PubMed  PubMed Central  Google Scholar 

  92. Bashyam MD, Bair R, Kim YH et al (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia (New York, NY) 7:556–562

    Article  CAS  Google Scholar 

  93. Loukopoulos P, Shibata T, Katoh H et al (2007) Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci 98:392–400

    Article  CAS  PubMed  Google Scholar 

  94. Kwei KA, Shain AH, Bair R et al (2011) SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One 6:e23924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chene P (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3:102–109

    Article  CAS  PubMed  Google Scholar 

  96. Nie J, Xie P, Liu L et al (2010) Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3 ligase MDM2. J Biol Chem 285:22818–22830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang W, Qin JJ, Voruganti S et al (2014) Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. Gastroenterology 147:893–902.e2

    Article  CAS  PubMed  Google Scholar 

  98. Wu B, Guo B, Kang J et al (2016) Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-beta-induced tumor formation. Tumour Biol 37:16077–16091

    Google Scholar 

  99. Rayburn E, Zhang R, He J et al (2005) MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 5:27–41

    Article  CAS  PubMed  Google Scholar 

  100. Rayburn ER, Ezell SJ, Zhang R (2009) Recent advances in validating MDM2 as a cancer target. Anti Cancer Agents Med Chem 9:882–903

    Article  CAS  Google Scholar 

  101. Zhang Z, Zhang R (2005) p53-independent activities of MDM2 and their relevance to cancer therapy. Curr Cancer Drug Targets 5:9–20

    Article  PubMed  Google Scholar 

  102. Wang T, Yang J, Xu J et al (2014) CHIP is a novel tumor suppressor in pancreatic cancer through targeting EGFR. Oncotarget 5:1969–1986

    PubMed  PubMed Central  Google Scholar 

  103. Kadera BE, Toste PA, Wu N et al (2015) Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res 21:157–165

    Article  CAS  PubMed  Google Scholar 

  104. Donahue TR, Tran LM, Hill R et al (2012) Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res 18:1352–1363

    Article  CAS  PubMed  Google Scholar 

  105. Liang JX, Ning Z, Gao W et al (2014) Ubiquitinspecific protease 22induced autophagy is correlated with poor prognosis of pancreatic cancer. Oncol Rep 32:2726–2734

    Article  CAS  PubMed  Google Scholar 

  106. Wang L, Dent SY (2014) Functions of SAGA in development and disease. Epigenomics 6:329–339

    Article  CAS  PubMed  Google Scholar 

  107. Burkhart RA, Peng Y, Norris ZA et al (2013) Mitoxantrone targets human ubiquitin-specific peptidase 11 (USP11) and is a potent inhibitor of pancreatic cancer cell survival. Mol Cancer Res 11:901–911

    Article  CAS  PubMed  Google Scholar 

  108. Perez-Mancera PA, Rust AG, van der Weyden L et al (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cox JL, Wilder PJ, Wuebben EL et al (2014) Context-dependent function of the deubiquitinating enzyme USP9X in pancreatic ductal adenocarcinoma. Cancer Biol Ther 15:1042–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pal A, Dziubinski M, Di Magliano MP et al (2018) Usp9x promotes survival in human pancreatic cancer and its inhibition suppresses pancreatic ductal adenocarcinoma in vivo tumor growth. Neoplasia (New York, NY) 20:152–164

    Article  CAS  Google Scholar 

  111. Ma T, Chen W, Zhi X et al (2018) USP9X inhibition improves gemcitabine sensitivity in pancreatic cancer by inhibiting autophagy. Cancer Lett 436:129–138

    Article  CAS  PubMed  Google Scholar 

  112. Kaistha BP, Krattenmacher A, Fredebohm J et al (2017) The deubiquitinating enzyme USP5 promotes pancreatic cancer via modulating cell cycle regulators. Oncotarget 8:66215–66225

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li XY, Wu HY, Mao XF et al (2017) USP5 promotes tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein. Biochem Biophys Res Commun 492:48–54

    Article  CAS  PubMed  Google Scholar 

  114. Tezel E, Hibi K, Nagasaka T et al (2000) PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res 6:4764–4767

    CAS  PubMed  Google Scholar 

  115. Arpalahti L, Saukkonen K, Hagstrom J et al (2017) Nuclear ubiquitin C-terminal hydrolase L5 expression associates with increased patient survival in pancreatic ductal adenocarcinoma. Tumour Biol 39:1010428317710411

    PubMed  Google Scholar 

  116. Lip PZ, Demasi M, Bonatto D (2017) The role of the ubiquitin proteasome system in the memory process. Neurochem Int 102:57–65

    Article  CAS  PubMed  Google Scholar 

  117. Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science (New York, NY) 296:1646–1647

    Article  CAS  Google Scholar 

  118. Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820

    Article  CAS  PubMed  Google Scholar 

  119. Tjomsland V, Sandnes D, Pomianowska E et al (2016) The TGFbeta-SMAD3 pathway inhibits IL-1alpha induced interactions between human pancreatic stellate cells and pancreatic carcinoma cells and restricts cancer cell migration. J Exp Clin Cancer Res 35:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Harrigan JA, Jacq X, Martin NM et al (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17:57–78

    Article  CAS  PubMed  Google Scholar 

  121. Selvaraju K, Mazurkiewicz M, Wang X et al (2015) Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updat 21-22:20–29

    Article  PubMed  Google Scholar 

  122. Wei R, Liu X, Yu W et al (2015) Deubiquitinases in cancer. Oncotarget 6:12872–12889

    PubMed  PubMed Central  Google Scholar 

  123. Feig C, Gopinathan A, Neesse A et al (2012) The pancreas cancer microenvironment. Clin Cancer Res 18:4266–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rowley M, Ohashi A, Mondal G et al (2011) Inactivation of Brca2 promotes Trp53-associated but inhibits KrasG12D-dependent pancreatic cancer development in mice. Gastroenterology 140:1303–1313.e1–3

    Article  CAS  PubMed  Google Scholar 

  125. Villarroel MC, Rajeshkumar NV, Garrido-Laguna I et al (2011) Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther 10:3–8

    Article  CAS  PubMed  Google Scholar 

  126. Wilkinson KD, Lee KM, Deshpande S et al (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science (New York, NY) 246:670–673

    Article  CAS  Google Scholar 

  127. Wilson PO, Barber PC, Hamid QA et al (1988) The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Br J Exp Pathol 69:91–104

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hurst-Kennedy J, Chin LS, Li L (2012) Ubiquitin C-terminal hydrolase l1 in tumorigenesis. Biochem Res Int 2012:123706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Fujii S, Mitsunaga S, Yamazaki M et al (2008) Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 99:1813–1819

    Article  CAS  PubMed  Google Scholar 

  130. Ko YH, Cho YS, Won HS et al (2013) Prognostic significance of autophagy-related protein expression in resected pancreatic ductal adenocarcinoma. Pancreas 42:829–835

    Article  CAS  PubMed  Google Scholar 

  131. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542

    Article  CAS  PubMed  Google Scholar 

  132. Yang S, Wang X, Contino G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang A, Rajeshkumar NV, Wang X et al (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4:905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Endo S, Nakata K, Ohuchida K et al (2017) Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 152:1492–1506.e24

    Article  CAS  PubMed  Google Scholar 

  135. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perera RM, Stoykova S, Nicolay BN et al (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang MC, Wang HC, Hou YC et al (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hashimoto D, Blauer M, Hirota M et al (2014) Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 50:1382–1390

    Article  CAS  PubMed  Google Scholar 

  139. Kang R, Tang D (2012) Autophagy in pancreatic cancer pathogenesis and treatment. Am J Cancer Res 2:383–396

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cuervo AM, Macian F (2012) Autophagy, nutrition and immunology. Mol Asp Med 33:2–13

    Article  CAS  Google Scholar 

  141. Sousa CM, Biancur DE, Wang X et al (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Apte MV, Haber PS, Darby SJ et al (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44:534–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mews P, Phillips P, Fahmy R et al (2002) Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut 50:535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kang R, Tang D, Lotze MT et al (2012) AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy 8:989–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89:836–843

    Article  CAS  PubMed  Google Scholar 

  146. Commisso C, Davidson SM, Soydaner-Azeloglu RG et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chan A, Diamandis EP, Blasutig IM (2013) Strategies for discovering novel pancreatic cancer biomarkers. J Proteome 81:126–134

    Article  CAS  Google Scholar 

  148. Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roeten MSF, Cloos J, Jansen G (2018) Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 81:227–243

    Article  CAS  PubMed  Google Scholar 

  150. Lee JK, Ryu JK, Yang KY et al (2011) Effects and mechanisms of the combination of suberoylanilide hydroxamic acid and bortezomib on the anticancer property of gemcitabine in pancreatic cancer. Pancreas 40:966–973

    Article  CAS  PubMed  Google Scholar 

  151. Naumann K, Schmich K, Jaeger C et al (2012) Noxa/Mcl-1 balance influences the effect of the proteasome inhibitor MG-132 in combination with anticancer agents in pancreatic cancer cell lines. Anti-Cancer Drugs 23:614–626

    Article  CAS  PubMed  Google Scholar 

  152. Alberts SR, Foster NR, Morton RF et al (2005) PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a north central cancer treatment group (NCCTG) randomized phase II study. Ann Oncol 16:1654–1661

    Article  CAS  PubMed  Google Scholar 

  153. Wang H, Cao Q, Dudek AZ (2012) Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy. Anticancer Res 32:1027–1031

    CAS  PubMed  Google Scholar 

  154. Nawrocki ST, Carew JS, Dunner K Jr et al (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519

    Article  CAS  PubMed  Google Scholar 

  155. Chiu HW, Lin SW, Lin LC et al (2015) Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 365:229–239

    Article  CAS  PubMed  Google Scholar 

  156. Bryant KL, Mancias JD, Kimmelman AC et al (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kimmelman AC (2015) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bryant KL, Stalnecker CA, Zeitouni D et al (2019) Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 25:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Donohue E, Thomas A, Maurer N et al (2013) The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J Cancer 4:585–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Xu XD, Zhao Y, Zhang M et al (2017) Inhibition of autophagy by deguelin sensitizes pancreatic cancer cells to doxorubicin. Int J Mol Sci 18:370

    Article  PubMed Central  CAS  Google Scholar 

  162. Saukkonen K, Hagstrom J, Mustonen H et al (2016) PROX1 and beta-catenin are prognostic markers in pancreatic ductal adenocarcinoma. BMC Cancer 16:472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Schmidt RL, Park CH, Ahmed AU et al (2007) Inhibition of RAS-mediated transformation and tumorigenesis by targeting the downstream E3 ubiquitin ligase seven in absentia homologue. Cancer Res 67:11798–11810

    Article  CAS  PubMed  Google Scholar 

  164. Mullard A (2019) First targeted protein degrader hits the clinic. Nat Rev Drug Discov 18:237–239

    Google Scholar 

  165. Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 16:101–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all the authors, whose original work could not be cited due to space limitations. This work was supported by grant to C.I.H. from the Academy of Finland (#297776), Sigrid Jusélius Foundation and Medicinska Understödsföreningen Liv och Hälsa r.f. The authors would like to acknowledge networking support by the Proteostasis COST Action (BM1307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina I. Holmberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arpalahti, L., Haglund, C., Holmberg, C.I. (2020). Proteostasis Dysregulation in Pancreatic Cancer. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_4

Download citation

Publish with us

Policies and ethics