Skip to main content

The Representation of Fiber Misalignment Distributions in Numerical Modeling of Compressive Failure of Fiber Reinforced Polymers

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 93))

Abstract

This chapter introduces a methodology to implement systematically spatially varying fiber misalignment distribution characterized experimentally into numerical modeling for failure surface analyses under in-plane loading conditions in compressive domain. If stochastically characterized spectral density of fiber misalignment by performing averaging over measured data as an ensemble is available, the approach allows designers to enhance the efficient usage of Fiber Reinforced Polymers (FRPs) by utilizing maximum capacity of the material with calculable reliability. In the present work, Fourier transform algorithms generally used in signal processing theory, are employed to generate representative distributions of fiber misalignments. The generated distributions are then mapped onto a numerical model as fluctuations of the material orientations. Through Monte Carlo analyses, probability distribution of peak stresses are subsequently calculated. This information is then used to define a probabilistic failure surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41(2), 143–151.

    Article  Google Scholar 

  2. Boeing. 787 dreamliner by design: Advanced composites use. https://www.boeing.com/commercial/787/by-design/advanced-composite-use. Accessed June 21, 2019.

  3. Liu, L., Zhang, B.-M., Wang, D.-F., & Wu, Z.-J. (2006). Effects of cure cycles on void content and mechanical properties of composite laminates. Composite Structures, 73(3), 303–309.

    Article  Google Scholar 

  4. Yurgartis, S. W. (1987). Measurement of small angle fiber misalignments in continuous fiber composites. Composites Science and Technology, 30(4), 279–293.

    Article  Google Scholar 

  5. Paluch, B. (1996). Analysis of geometric imperfections affecting the fibers in unidirectional composites. Journal of Composite Materials, 30(4), 454–485.

    Article  MathSciNet  Google Scholar 

  6. Jelf, P. M., & Fleck, N. A. (1992). Compression failure mechanisms in unidirectional composites. Journal of Composite Materials, 26(18), 2706–2726.

    Article  Google Scholar 

  7. Wisnom, M. R. (1991). Relationship between strength variability and size effect in unidirectional carbon fibre/epoxy. Composites, 22(1), 47–52.

    Article  Google Scholar 

  8. Liu, D., Fleck, N. A., & Sutcliffe, M. P. F. (2004). Compressive strength of fibre composites with random fibre waviness. Journal of the Mechanics and Physics of Solids, 52(7), 1481–1505.

    Article  Google Scholar 

  9. Sutcliffe, M. P. F. (2013). Modelling the effect of size on compressive strength of fibre composites with random waviness. Composites Science and Technology, 88(Supplement C), 142–150.

    Article  Google Scholar 

  10. Lekou, D. J., & Philippidis, T. P. (2008). Mechanical property variability in FRP laminates and its effect on failure prediction. Composites Part B: Engineering, 39(7), 1247–1256.

    Article  Google Scholar 

  11. Whiteside, M. B., Pinho, S. T., & Robinson, P. (2012). Stochastic failure modelling of unidirectional composite ply failure. Reliability Engineering and System Safety, 108, 1–9.

    Article  Google Scholar 

  12. Kaddour, A. S., & Hinton, M. J. (2012). Input data for test cases used in benchmarking triaxial failure theories of composites. Journal of Composite Materials, 46(19–20), 2295–2312.

    Article  Google Scholar 

  13. Slaughter, W. S., & Fleck, N. A. (1994). Microbuckling of fiber composites with random initial fiber waviness. Journal of the Mechanics and Physics of Solids, 42(11), 1743–1766.

    Article  Google Scholar 

  14. Safdar, N., Daum, B., & Rolfes, R. (2018). Stochastic compressive failure surface modelling for the unidirectional fibre reinforced composites under plainstress. In 6th European Conference on Computational Mechanics, Glasgow.

    Google Scholar 

  15. Clarke, A. R., Archenhold, G., Davidson, N. C., Slaughter, W. S., & Fleck, N. A. (1995). Determining the power spectral density of the waviness of unidirectional glass fibres in polymer composites. Applied Composite Materials, 2(4), 233–243.

    Article  Google Scholar 

  16. Sutcliffe, M. P. F., Lemanski, S. L., & Scott, A. E. (2012). Measurement of fibre waviness in industrial composite components. Composites Science and Technology, 72(16), 2016–2023.

    Article  Google Scholar 

  17. Budiansky, B., & Fleck, N. A. (1993). Compressive failure of fibre composites. Journal of the Mechanics and Physics of Solids, 41(1), 183–211.

    Article  Google Scholar 

  18. Rosen, B.W. (1965). Mechanics of composite strengthening.

    Google Scholar 

  19. Argon, A. S. (1972). Fracture of composites. Treatise on Materials Science and Technology, 1, 79–114.

    Article  Google Scholar 

  20. Budiansky, B. (1983). Micromechanics. Computers and Structures, 16(1), 3–12.

    Article  Google Scholar 

  21. Fleck, N. A., & John, Y. S. (1995). Microbuckle initiation in fibre composites : A finite element study. Journal of the Mechanics and Physics of Solids, 43(12), 1887–1918.

    Article  MathSciNet  Google Scholar 

  22. Kyriakides, S., Arseculeratne, R., Perry, E. J., & Liechti, K. M. (1995). On the compressive failure of fiber reinforced composites. International Journal of Solids and Structures, 32(6), 689–738. Time Dependent Problems in Mechanics.

    Article  Google Scholar 

  23. Yerramalli, C. S., & Waas, A. M. (2004). The effect of fiber diameter on the compressive strength of composites-A 3D finite element based study. Computer Modeling in Engineering and Sciences, 6, 1–16.

    MATH  Google Scholar 

  24. Prabhakar, P., & Waas, A. M. (2013). Micromechanical modeling to determine the compressive strength and failure mode interaction of multidirectional laminates. Composites Part A: Applied Science and Manufacturing, 50, 11–21.

    Article  Google Scholar 

  25. Romanowicz, M. (2014). Initiation of kink bands from regions of higher misalignment in carbon fiber-reinforced polymers. Journal of Composite Materials, 48(19), 2387–2399.

    Article  Google Scholar 

  26. Bishara, M., Rolfes, R., & Allix, O. (2017). Revealing complex aspects of compressive failure of polymer composites—Part I: Fiber kinking at microscale. Composite Structures, 169, 105–115. In Honor of Prof. Leissa.

    Article  Google Scholar 

  27. Waas, A. M., & Schultheisz, C. R. (1996). Compressive failure of composites, Part II: Experimental studies. Progress in Aerospace Sciences, 32(1), 43–78.

    Article  Google Scholar 

  28. Vogler, T. J., & Kyriakides, S. (1999). Inelastic behavior of an AS4/PEEK composite under combined transverse compression and shear. Part I: experiments. International Journal of Plasticity, 15(8), 783–806.

    Article  Google Scholar 

  29. Clarke, A. R., Archenhold, G., & Davidson, N. C. (1995). A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Composites Science and Technology, 55(1), 75–91.

    Article  Google Scholar 

  30. Bednarcyk, B. A., Aboudi, J., & Arnold, S. M. (2014). The effect of general statistical fiber misalignment on predicted damage initiation in composites. Composites Part B: Engineering, 66, 97–108.

    Article  Google Scholar 

  31. Allix, O., Feld, N., Baranger, E., Guimard, J.-M., & Cuong, H.-M. (2014). The compressive behaviour of composites including fiber kinking: modelling across the scales. Meccanica, 49(11), 2571–2586.

    Article  MathSciNet  Google Scholar 

  32. Cebon, D., & Newland, D. E. (1983). Artificial generation of road surface topography by the inverse FFT method. Vehicle System Dynamics, 12(1–3), 160–165.

    Article  Google Scholar 

  33. Newland, D. E. (1984). An introduction to random vibrations and spectral analysis. Mineola, New York: Dover Publications Inc.

    Google Scholar 

  34. Bažant, Z. P., Kim, J.-J. H., Daniel, I. M., Becq-Giraudon, E., & Zi, G. (1999). Size effect on compression strength of fiber composites failing by kink band propagation. International Journal of Fracture, 95(1), 103–141.

    Article  Google Scholar 

  35. Bažant, Z. P. (1999). Size effect on structural strength: A review. Archive of Applied Mechanics, 69(9), 703–725.

    MATH  Google Scholar 

  36. Jacobs, T. D. B., Junge, T., & Pastewka, L. (2017). Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrology and Properties, 5(1), 013001.

    Google Scholar 

  37. Elfouhaily, T., Chapron, B., Katsaros, K., & Vandemark, D. (1997). A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research: Oceans, 102(C7), 15781–15796.

    Article  Google Scholar 

  38. Kay, S., Hedley, J., Lavender, S., & Nimmo-Smith, A. (2011). Light transfer at the ocean surface modeled using high resolution sea surface realizations. Optics Express, 19(7), 6493–6504.

    Article  Google Scholar 

  39. Mobley, C. (2016). Ocean optics web book.

    Google Scholar 

  40. Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. Mechanics of Materials, 59, 50–64.

    Article  Google Scholar 

  41. ABAQUS/Standard User’s Manual, Version 6.16. Simulia, 2016.

    Google Scholar 

  42. Vogler, T. J., Hsu, S.-Y., & Kyriakides, S. (2000). Composite failure under combined compression and shear. International Journal of Solids and Structures, 37(12), 1765–1791.

    Article  Google Scholar 

  43. Basu, S., Waas, A. M., & Ambur, D. R. (2006). Compressive failure of fiber composites under multi-axial loading. Journal of the Mechanics and Physics of Solids, 54(3), 611–634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Safdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safdar, N., Daum, B., Rolfes, R., Allix, O. (2020). The Representation of Fiber Misalignment Distributions in Numerical Modeling of Compressive Failure of Fiber Reinforced Polymers. In: Wriggers, P., Allix, O., Weißenfels, C. (eds) Virtual Design and Validation. Lecture Notes in Applied and Computational Mechanics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-38156-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38156-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38155-4

  • Online ISBN: 978-3-030-38156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics