Skip to main content

Assessing the Versatility of Molecular Modelling as a Strategy for Predicting Gas Adsorption Properties of Chalcogels

  • Chapter
  • First Online:
Theory and Simulation in Physics for Materials Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 296))

  • 682 Accesses

Abstract

Modelling gas adsorption of porous materials is nowadays an undeniable necessary in order to complement experiment findings with the purpose to enrich our fundamental understanding of adsorption mechanisms as well as develop better performing materials for gas mixture separation. In this contribution, we explore the possibility to use first-principles molecular dynamics (FPMD) and grand canonical Monte Carlo (GCMC) simulations to target the gas adsorption of disordered nanoporous chalcogenides (i.e. chalcogels). This computational scheme allows us to take advantage of the ability of FPMD to accurately describe the structure and bonding of the disordered nature of chalcogels as well as the potential of GCMC to model the adsorption mechanisms of porous networks. We assess the versatility of such scheme by evaluating the role of pore size, chemical stoichiometry and composition for multiple chalcogenide-based systems on nitrogen adsorption isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Strategic Energy Technology Plan 2017, https://bit.ly/2kqMR6W

  2. C.H. Lau, S. Liu, D.R. Paul, J. Xia, Y.-C. Jean, H. Chen, K. Shao, T.-S. Chung, Adv. Energy Mater. 1, 634–642 (2011)

    Article  CAS  Google Scholar 

  3. B. Coasne, A. Galarneau, R.J.M. Pellenq, F. Di Renzo, Chem. Soc. Rev. 42, 4141–4171 (2013)

    Article  CAS  Google Scholar 

  4. B. Coasne, P. Ugliengo, Langmuir 28, 11131–11141 (2012)

    Article  CAS  Google Scholar 

  5. B. Coasne, New J. Chem. 40, 4078 (2016)

    Article  CAS  Google Scholar 

  6. X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Energy Fuels 16, 1463–1469 (2002)

    Article  CAS  Google Scholar 

  7. N.R. Stuckert, R.T. Yang, Environ. Sci. Technol. 45, 10257–10264 (2011)

    Article  CAS  Google Scholar 

  8. G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 14, 415–422 (2008)

    Article  CAS  Google Scholar 

  9. J. Merel, M. Clausse F. Meunier, Ind. Eng. Chem. Res. 47, 209–215 (2008)

    Article  CAS  Google Scholar 

  10. N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Energy Environ. Sci. 5, 7306–7322 (2012)

    Article  CAS  Google Scholar 

  11. J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073–2094 (2006)

    Article  CAS  Google Scholar 

  12. P. Billemont, B. Coasne, G. De Weireld, Langmuir 29, 3328–3338 (2013)

    Article  CAS  Google Scholar 

  13. G.P. Hao, Z.Y. Jin, Q. Sun, X.Q. Zhang, J.-T. Zhang, A.H. Lu, Energy Environ. Sci. 6, 3740–3747 (2013)

    Article  CAS  Google Scholar 

  14. J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  15. C.E. Wilmer, O.K. Farha, Y.-S. Bae, J.T. Hupp, R.Q. Snurr, Energy Environ. Sci. 5, 9849–9856 (2012)

    Article  CAS  Google Scholar 

  16. V. Stanić, A.C. Pierre, T.H. Etsell, J. Am. Ceram. Soc. 83, 1790–1796 (2000)

    Article  Google Scholar 

  17. K.K. Kalebaila, D.G. Georgiev, S.L. Brock, J. Non-Cryst, Solids 352, 232–240 (2006)

    CAS  Google Scholar 

  18. G.A. Armatas, M.G. Kanatzidis, Nat. Mater. 8, 222–271 (2009)

    Article  CAS  Google Scholar 

  19. B.J. Riley, J. Chun, W. Um, W.C. Lepry, J. Matyas, M.J. Olszta, X. Li, K. Polychronopoulou, M.G. Kanatzidis, Environ. Sci. Technol. 47, 7540–7547 (2013)

    Article  CAS  Google Scholar 

  20. Q. Lin, X. Bu, C. Mao, X. Zhao, K. Sasan, P. Feng, J. Am. Chem. Soc. 137, 6184–6187 (2015)

    Article  CAS  Google Scholar 

  21. H. Yang, M. Luo, X. Chen, X. Zhao, J. Lin, D. Hu, D. Li, X. Bu, P. Feng, T. Wu, Inorg. Chem. 56, 14999–15005 (2017)

    Article  CAS  Google Scholar 

  22. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Article  CAS  Google Scholar 

  23. M.G. Kanatzidis, Adv. Mater. 19, 1165–1181 (2007)

    Article  CAS  Google Scholar 

  24. M. Shafai-Fallah, A. Rothenberger, A.P. Katsoulidis, J. He, C.D. Malliakas, M.G. Kanatzidis, Adv. Mater. 23, 4857–4860 (2011)

    Article  CAS  Google Scholar 

  25. E. Ahmed, A. Rothemberger, J. Mater. Chem. A 3, 7786–7792 (2015)

    Article  CAS  Google Scholar 

  26. K.S. Subrahmanyam, C.D. Malliakas, D. Sarma, G.S. Armatas, J. Wu, M.G. Kanatzidis, J. Am. Chem. Soc. 137, 13943–13948 (2015)

    Article  CAS  Google Scholar 

  27. B.J. Riley, D.A. Pierce, W.C. Lepry, J.O. Kroll, J. Chun, K.S. Subrahmanyam, M.G. Kanatzidis, F.K. Alblouwy, A. Bulbule, E.M. Sabolsky, Ind. Eng. Chem. Res. 54, 11259–11267 (2015)

    Article  CAS  Google Scholar 

  28. S. Murugesan, P. Kearns, K.J. Stevenson, Langmuir 28, 5513–5517 (2012)

    Article  CAS  Google Scholar 

  29. G. Leyral, M. Ribes, L. Courthéoux, D. Uzio, A. Pradel, Eur. J. Inorg. Chem. 31, 4967–4971 (2012)

    Article  CAS  Google Scholar 

  30. G. Ori, C. Massobrio, A. Bouzid, M. Boero, B. Coasne, Phys. Rev. B 90, 045423 (2014)

    Article  CAS  Google Scholar 

  31. G. Ori, C. Massobrio, A. Pradel, M. Ribes, B. Coasne, Phys. Chem. Chem. Phys. 18, 13449–13458 (2016)

    Article  CAS  Google Scholar 

  32. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  33. A. Galarneau, H. Cambon, F. Di Renzo, F. Fajula, Langmuir 17, 8328–8335 (2001)

    Article  CAS  Google Scholar 

  34. R. Car, M. Parrinello, For this contribution as FPMD simulation method we adopted the Car-Parrinello approach. Phys. Rev. Lett. 55, 2471 (1985). Using the CPMD code [see http://www.cpmd.org/, copyright IBM Corp. 1990–2013, copyright MPI für Festkörperforschung Stuttgart 1997–2001.]

    Google Scholar 

  35. G. Ori, A. Bouzid, E. Martin, C. Massobrio, S. Le Roux, M. Boero, Solid State Sci. 95, 105925 (2019)

    Article  CAS  Google Scholar 

  36. J.-Y. Raty, M. Schumacher, P. Golub, V.L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 31, 1806280 (2019)

    Article  CAS  Google Scholar 

  37. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  38. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  CAS  Google Scholar 

  41. A. Bouzid, C. Massobrio, M. Boero, G. Ori, K. Sykina, E. Furet, Phys. Rev. B 92, 134208 (2015)

    Article  CAS  Google Scholar 

  42. A. Bouzid, S. Le Roux, G. Ori, M. Boero, C. Massobrio, J. Chem. Phys. 143, 034504 (2015)

    Article  CAS  Google Scholar 

  43. A. Bouzid, S. Le Roux, G. Ori, C. Tugene, M. Boero, C. Massobrio, in Molecular Dynamics Simulations of Disordered Materials, vol. 12 (Springer Series in Materials Science, Cham, 2015), pp. 313–344

    Google Scholar 

  44. S. Le Roux, A. Bouzid, K.Y. Kim, S. Han, A. Zeidler, P.S. Salmon, C. Massobrio, Chem. Phys. 145, 084502 (2016)

    Google Scholar 

  45. E. Lampin, A. Bouzid, G. Ori, M. Boero, C. Massobrio, J. Chem. Phys. 147, 044504 (2017)

    Article  CAS  Google Scholar 

  46. C. Massobrio, E. Martin, Z. Chaker, M. Boero, A. Bouzid, G. Ori, Front. Mater. 5, 1–5 (2018)

    Article  Google Scholar 

  47. A.K. Rappé, W.A. Goddard III, J. Phys. Chem. 95, 3358–3363 (1991)

    Article  Google Scholar 

  48. P. Schwerdtfeger, J.K. Nagle, Mol. Phys. 117, 9–12 (2019)

    Article  CAS  Google Scholar 

  49. L. Pauling, The Nature of the Chemical Bond, th edn. (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  50. C.E. Wilmer, K.C. Kim, R.Q. Snurr, J. Phys. Chem. Lett. 3, 2506 (2012)

    Article  CAS  Google Scholar 

  51. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)

    Google Scholar 

  52. C. Gatti, P. Macchi, Modern Charge-Density Analysis (Springer, Dordrecht, 2012)

    Book  Google Scholar 

  53. P.-O. L’owdin, J. Chem. Phys. 18, 365 (1950)

    Google Scholar 

  54. R.S. Mulliken, J. Chem. Phys. 1955, 23 (1833)

    Google Scholar 

  55. S.R. Cox, D.E. Williams, J. Comput. Chem. 2, 304 (1981)

    Article  CAS  Google Scholar 

  56. J.J. Potoff, J.I. Siepmann, AIChE J. 47, 1676–1682 (2001)

    Article  CAS  Google Scholar 

  57. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)

    Article  CAS  Google Scholar 

  58. Z. Chaker, A. Bouzid, B. Coasne, C. Massobrio, M. Boero, G. Ori, J. Non-Cryst, Solids 498, 288–293 (2018)

    CAS  Google Scholar 

  59. S. Grimme, J. Compt. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  60. L.J. Karssemejier, G.A. Wijs, H.M. Cuppen, Phys. Chem. Chem. Phys. 16, 15630 (2014)

    Article  CAS  Google Scholar 

  61. Z. Sun, D. Pan, L. Xu, E. Wang, Proc. Natl. Acad. Sci. 109, 13177–13181 (2012)

    Google Scholar 

  62. M.-S. Lee, B.P. McGill, R. Rousseau, V.-A. Glezakou, J. Phys. Chem. C 122, 1125 (2017)

    Article  CAS  Google Scholar 

  63. R. Vuilleumier, N. Sator, B. Guillot, J. Non-Cryst, Solids 357, 2555 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Pôle HPC and Equipex quip@Meso at the University of Strasbourg and the Grand Equipement National de Calcul Intensif (GENCI) under allocation DARI-A0060807670. G.O. acknowledges the Seed Money program of Eucor—The European Campus (project MEDIA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Ori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amiehe Essomba, I.B., Massobrio, C., Boero, M., Ori, G. (2020). Assessing the Versatility of Molecular Modelling as a Strategy for Predicting Gas Adsorption Properties of Chalcogels. In: Levchenko, E., Dappe, Y., Ori, G. (eds) Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-37790-8_2

Download citation

Publish with us

Policies and ethics