Skip to main content

Utilization of Atmospheric Plasmas for Agricultural Applications

  • Conference paper
  • First Online:
Engineering for Sustainable Future (INTER-ACADEMIA 2019)

Abstract

Atmospheric pressure plasma fit great in agricultural applications due to their reduced complexity and to their chemical reactivity, being produced in air. In this work we present some of our results regarding agricultural applications of plasmas, obtained with seeds and soil exposed in atmospheric pressure plasmas conditions. The treatment of seeds shown a non-linear behavior with the exposure time and voltage for seed germination and development. The effects are strongly dependent on the type of seeds. Radish seeds were stimulated with lower voltages plasma and shorter exposures as compared to broccoli. In some conditions plasma exposure inhibited the growth, with lower germination rates than un-exposed samples and smaller size of the sprouts. For soil treatment we found the possibility to increase the nitrogen content of soil when tuning plasma treatment conditions, and we believe it is due to the reaction between reactive nitrogen species produced in plasma and organic components in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitazaki S, Sarinont T, Koga K, Hayashi N, Shiratani M (2014) Plasma induced long-therm growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge plasmas. Curr Appl Phys 14:S149–S153

    Article  Google Scholar 

  2. Dhayal M, Lee SY, Park S-U (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506

    Article  Google Scholar 

  3. Zahoranova Z, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seed surface. Plasma Chem Plasma Process 36:397–414

    Article  Google Scholar 

  4. Ito, M., Ohta, T., Hori, M.: Plasma agriculture. J Korean Phys Soc 60, 937–943 (2012)

    Article  Google Scholar 

  5. Iseki, S., Ohta, T., Aomatsu, A., Ito, M., Kano, H., Higashijima, Y., Hori, M.: Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma. Appl Phys Lett 96, 153704 (2010)

    Article  Google Scholar 

  6. Koga K, Thapanut S, Amano T, Seo H, Itagaki N, Hayashi N, Shiratani M (2016) Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Appl Phys Express 9:016201

    Article  Google Scholar 

  7. Jiafeng, J., Xin, H., Ling, L., Jiangang, L., Hanliang, S., Qilai, X., Renhong, Y., Yuanhua, D.: Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16, 54 (2014)

    Article  Google Scholar 

  8. Jiang, J., Lu, Y., Li, J., He, X., Shao, H., Dong, Y.: Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt). PLoS ONE 9, e97753 (2014)

    Article  Google Scholar 

  9. Ling, L., Jiangang, L., Minchong, S., Chunlei, Z., Yuanhua, D.: Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5, 13033 (2015)

    Article  Google Scholar 

  10. Bormashenko, E., Grynyov, R., Bormashenko, Y., Drori, E.: Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2, 741 (2012)

    Article  Google Scholar 

  11. Donkor, O.N., Stojanovksa, L., Ginn, P., Ashton, J., Vasiljevic, T.: Germinated grains—sources of bioactive compounds. Food Chem 135(3), 950–959 (2012)

    Article  Google Scholar 

  12. Gan, R.Y., Lui, W.Y., Wu, K., Chan, C.L., Dai, S.H., Sui, Z.Q., Corke, H.: Bioactive compounds and biactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci Technol 59, 1–14 (2017)

    Article  Google Scholar 

  13. Nestle, M.: Broccoli sprouts in cancer prevention. Nutr Rev 56(4), 127–130 (1998)

    Article  Google Scholar 

  14. Eto, H., Ono, Y., Ogino, A., Nagatsu, M.: Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Appl Phys Lett 93, 221502 (2008)

    Article  Google Scholar 

  15. Jayasena, D.D., Kim, H.J., Yong, H.I., Park, S., Kim, K., Choe, W., Jo, C.: Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46, 51–57 (2015)

    Article  Google Scholar 

  16. Patil, B.S., Wang, Q., Hessel, V., Lang, J.: Plasma N2-fixation: 1900–2014. Catal Today 256, 49–66 (2015)

    Article  Google Scholar 

  17. Stryczewska, H.D., Ebihara, K., Takayama, M., Gyoutoku, Y., Tachibana, M.: Non-thermal plasma-based technology for soil treatment. Plasma Process Polym 2, 238–245 (2005)

    Article  Google Scholar 

  18. Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biol Soc Trans 11, 591–592 (1985)

    Article  Google Scholar 

  19. https://imagej.nih.gov/ij/index.html

  20. Gomez-Ramirez, A., Lopez-Santos, C., Cantos, M., Garcia, J.L., Molina, R., Cotrino, J., Espinos, J.P., Gonzalez-Elipe, A.R.: Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Sci Rep 7, 5924 (2017)

    Article  Google Scholar 

  21. Bafoil, M., Jemmat, A., Martinez, Y., Merbahi, N., Eichwald, O., Dunand, C., Mohammed, Y.: Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS ONE 13(4), e0195512 (2017)

    Article  Google Scholar 

  22. Guo, Q., Meng, Y., Qu, G., Wang, T., Yang, F., Liang, D., Hu, S.: Improvement of wheat seed vitality by dielectric barrier discharge plasma. Bioelectromagnetics 39(2), 120–131 (2017)

    Article  Google Scholar 

  23. Tounekti, T., Mujahid, Z.I., Khemira, H.: Non-thermal dielectric barrier discharge (DBD) plasma affects germination of coffee and grape seeds. AIP Conf Proc 1976, 020029 (2018)

    Article  Google Scholar 

  24. Sidaway, G.H.: influence of electrostatic fields on seed germination. Nature 211, 303 (1966)

    Article  Google Scholar 

  25. Pietruszewski S (2014) Electromagnetic fields, impact on seed germination and plant growth. Encycl Agrophys Encycl Earth Sci Ser 267–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliana Motrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Motrescu, I., Filip, M., Herciu, F.P., Jitareanu, G. (2020). Utilization of Atmospheric Plasmas for Agricultural Applications. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics