Skip to main content

Quantum Dot Interfaces for Memristor

  • Chapter
  • First Online:
Quantum Dot Optoelectronic Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 27))

Abstract

Memristor, a two-terminal device, whose resistance changes according to the amount of charge that passes through, has become a popular choice for memory arrays and is expected to play a significant role in emerging memory technologies. These memories have a high speed, high density, non-destructive readout, long endurance, low operating voltage, simple structure, low-cost, and also a unique possibility of multilevel data storage. These devices can be constructed with a wide range of materials, such as metal oxides, nanomaterials, and organic materials, polymers with simple crossbar geometry. As a result, wide-range of mechanisms does play a role in electrical memory switching effect. Hence, a brief overview of all such mechanisms has been discussed. In the beginning, zero-dimensional materials, also referred as quantum dots, have become fascinating materials due to their size- and shape-tuneable optoelectronic properties, with a large surface to volume ratio, which can be suitably modified with caping molecules. In the recent past, these are explored as potential candidate for memristor with unique advantages. During this period, a lot of developments are witnessed; the present chapter is aimed to cover all such aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, S., & Chen, P.-Y. (2016). Emerging memory technology recent trends and prospects. IEEE Solid-State Circuits Magazine, 8, 43.

    Article  Google Scholar 

  2. Zidan, M. A., Strachan, J. P., & Lu, W. D. (2018). The future of electronics based on memristive systems. Nature Electronics, 1(1), 22–29.

    Article  Google Scholar 

  3. https://www.marketwatch.com/press-release/in-memory-database-market-2019-size-share-trends-growth-global-analysis-with-focus-on-opportunities-and-forecast-by-2023-2019-02-08.

  4. Chen, A. (2016). A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electronics, 125, 25–38.

    Article  CAS  Google Scholar 

  5. Wong, H. S., & Salahuddin, S. (2015). Memory leads the way to better computing. Nature Nanotechnology, 10(3), 191–194.

    Article  CAS  Google Scholar 

  6. Jian-Gang, Z. (2008). Magnetoresistive random access memory: The path to competitiveness and scalability. Proceedings of the IEEE, 96(11), 1786–1798.

    Article  Google Scholar 

  7. Jo, S. H., Kim, K.-H., & Lu, W. (2009). High-density crossbar arrays based on a Si memristive system. ACS Nano Letters, 9(2), 870–874.

    Article  CAS  Google Scholar 

  8. Zhao, X., Fan, Z., Xu, H., Wang, Z., Xu, J., Ma, J., & Liu, Y. (2018). Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. Journal of Material Chemistry C, 6, 7195–7200. https://doi.org/10.1039/C8TC01844H.

    Article  CAS  Google Scholar 

  9. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.

    Article  Google Scholar 

  10. Hickmott, T. W. (1962). Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics, 33, 2669–2682.

    Article  CAS  Google Scholar 

  11. Gibbons, J. F., & Beadle, W. E. (1964). Switching properties of thin Nio films. Solid-State Electronics, 7, 785–790.

    Article  CAS  Google Scholar 

  12. Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid-State Electronics, 11, 535–541.

    Article  CAS  Google Scholar 

  13. Thakoor, S., Moopenn, A., Daud, T., & Thakoor, A. P. (1990). Solid-state thin-film memistor for electronic neural networks. Journal of Applied Physics, 67, 3132.

    Article  CAS  Google Scholar 

  14. Buot, F. A., & Rajagopal, A. K. (1994). Binary information storage at zero bias in quantum-well diodes. Journal of Applied Physics, 76, 5552.

    Article  CAS  Google Scholar 

  15. Beck, A., Bednorz, J. G., Gerber, C., Rossel, C., & Widmer, D. (2000). Reproducible switching effect in thin oxide films for memory applications. Applied Physics Letters, 77, 139.

    Article  CAS  Google Scholar 

  16. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  CAS  Google Scholar 

  17. Lim, E., & Ismail, R. (2015). Conduction mechanism of valence change resistive switching memory: A survey. Electronics, 4(3), 586–613.

    Article  CAS  Google Scholar 

  18. Jeong, D. S., Thomas, R., Katiyar, R. S., Scott, J. F., Kohlstedt, H., Petraru, A., & Hwang, C. S. (2012). Emerging memories: resistive switching mechanisms and current status. Reports on Progress in Physics, 75(7), 076502.

    Article  CAS  Google Scholar 

  19. Mickel, P. R., Lohn, A. J., & Marinella, M. J. (2014). Memristive switching: physical mechanisms and applications. Modern Physics Letters B, 28(10), 1430003.

    Article  CAS  Google Scholar 

  20. Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories. Natuture Materials, 6, 833–840.

    Article  CAS  Google Scholar 

  21. Menzel, S., Böttger, U., Wimmer, M., & Salinga, M. (2015). Physics of the switching kinetics in resistive memories. Advanced Functional Materials, 25(40), 6306–6325.

    Article  CAS  Google Scholar 

  22. Zhuravlev, M. Y., Jaswal, S. S., Tsymbal, E. Y., & Sabirianov, R. F. (2005). Ferroelectric switch for spin injection. Applied Physics Letters, 87(22).

    Google Scholar 

  23. Dobrosavljevi, V. (2011). Introduction to metal-insulator transitions. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199592593.003.0001.

  24. Simmons, J. G., & Verderber, R. R. (1967). New conduction and reversible memory phenomena in thin insulating films. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 301(1464), 77–102.

    CAS  Google Scholar 

  25. Thurstans, R. E., Wild, P. C., & Oxley, D. P. (1974). Enhanced forming in Al/SiOx/Au structures under pulsed bias. Thin Solid Films, 20, 281–286.

    Article  CAS  Google Scholar 

  26. Fujii, T., & Kawasaki, M. (2005). Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3∕SrTi0.99Nb0.01O3. Applied Physics Letters, 86(1).

    Google Scholar 

  27. Sawa, A., Fujii, T., Kawasaki, M., & Tokura, Y. (2006). Interface resistance switching at a few nanometer thick perovskite manganite active layers. Applied Physics Letters, 88(23), 232112.

    Article  CAS  Google Scholar 

  28. Hoyos, J. A., Kotabage, C., & Vojta, T. (2007). Effects of dissipation on a quantum critical point with disorder. Physical Review Letters, 99(23), 230601.

    Article  CAS  Google Scholar 

  29. Ahn, C. H., Bhattacharya, A., Ventra, M. D., et al. (2006). Electrostatic modification of Novel materials. Review of Modern Physics, 78(4), 1185–1212.

    Article  CAS  Google Scholar 

  30. Mott, N. F. (1949). The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society A, 62.

    Google Scholar 

  31. Kim, D. S., Kim, Y. H., Lee, C. E., & Kim, Y. T. (2006). Colossal electroresistance mechanism in Au∕Pr0.7Ca0.3MnO3∕Ptsandwich structure: Evidence for a Mott transition. Physical Review B, 74(17).

    Google Scholar 

  32. Fors, R., Khartsev, S. I., & Grishin, A. M. (2005). Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Physical Review B, 71(4).

    Google Scholar 

  33. Chen, A. (2015). Electronic effect resistive switching memories. In Emerging nanoelectronic devices (pp. 164–180).

    Google Scholar 

  34. Tsymbal, E. Y., & Kohlstedt, H. (2006). Applied physics. Tunneling across a ferroelectric. Science, 313(5784), 181–183.

    Article  CAS  Google Scholar 

  35. Blom, P. W. M., Wolf, R. M., Cillessen, J. F. M., & Krijn, M. P. C. M. (1994). Ferroelectric Schottky diode. Physical Review Letters, 73(15), 2107–2110.

    Article  CAS  Google Scholar 

  36. Qu, H., Yao, W., Garcia, T., & Zhang, J. (2003). Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymer. Applied Physics Letters, 82, 4322–4324.

    Article  CAS  Google Scholar 

  37. Kohlstedt, H., Pertsev, N. A., Rodríguez Contreras, J., & Waser, R. (2005). Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Physical Review B, 72, 125341.

    Article  CAS  Google Scholar 

  38. Velev, J. P., Duan, C.-G., Burton, J. D., Smogunov, A., Niranjan, M. K., Tosatti, E., Jaswal, S. S., & Tsymbal, E. Y. (2009). Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance States from first principles. Nano Lett, 9(1), 427–432.

    Article  CAS  Google Scholar 

  39. Scott, J. F. (2007). Applications of modern ferroelectrics source. Science, 315, 954–959.

    Article  CAS  Google Scholar 

  40. Batra, I. P., & Silverman, B. D. (1972). Thermodynamic stability of thin ferroelectric films. Solid State Communications, 11, 291–294.

    Article  CAS  Google Scholar 

  41. Hou, P., Wang, J., & Zhong, X. (2017). Investigation of multilevel data storage in silicon-based polycrystalline ferroelectric tunnel junction. Scientific Reports, 7(1), 4525.

    Article  CAS  Google Scholar 

  42. Guo, X., Schindler, C., Menzel, S., & Waser, R. (2007). Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 91(13).

    Google Scholar 

  43. Menzel, S., Waters, M., Marchewka, A., Böttger, U., Dittmann, R., & Waser, R. (2011). Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Advanced Functional Materials, 21(23), 4487–4492.

    Article  CAS  Google Scholar 

  44. Buroff, A., Nebauer, E., Suptiz, P., & Willert, I. (1977). Migration of silver and gold in Amorphous As2S3. Physica status Solidi. a(40), K195.

    Google Scholar 

  45. Clymer, D. A., & Matin, M. A. (2005). Application of Mott-Gurney law to model the current-voltage relationship of PPV/CN-PPV with a thin-metal anode buffer. In Photonic Devices and Algorithms for Computing VII.

    Google Scholar 

  46. Liu, C.-Y., Sung, P.-W., Lai, C.-H., & Wang, H.-Y. (2011). Resistive Switching Characteristics of Cu/SiO2/Pt Structure. Materials Science Forum, 687, 167–173.

    Article  CAS  Google Scholar 

  47. Waser, R., Dittmann, R., Staikov, G., & Szot, K. (2009). Redox-based resistive switching memories - Nanoionic mechanisms, prospects, and challenges. Advanced Materials, 21(25-26), 2632–2663.

    Article  CAS  Google Scholar 

  48. Schindler, C., Weides, M., Kozicki, M. N., & Waser, R. (2008). Low current resistive switching in Cu–SiO2 cells. Applied Physics Letters, 92(12).

    Google Scholar 

  49. Ee, W. L., & Ismail, R. (2015). Conduction mechanism of valence change resistive switching memory: A survey. Electronics, 4, 586–613.

    Article  CAS  Google Scholar 

  50. Sun, P., Li, L., Lu, N., Lv, H., Liu, M., & Liu, S. (2014). Physical model for electroforming process in valence change resistive random access memory. Journal of Computational Electronics, 14(1), 146–150.

    Article  Google Scholar 

  51. You, S., Liu, B., Gao, Y., Wang, Y., Tang, C. Y., Huang, Y., & Ren, N. (2016). Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochimica Acta, 214, 326–335.

    Article  CAS  Google Scholar 

  52. Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proceedings of the IEEE, 98(12), 2237–2251.

    Article  CAS  Google Scholar 

  53. Munjal, S., & Khare, N. (2017). Valence change bipolar resistive switching accompanied with magnetization switching in CoFe2O4 thin film. Scientific Reports, 7(1), 12427.

    Article  CAS  Google Scholar 

  54. Lee, D., Woo, J., Cha, E., Park, S., Lee, S., Park, J., & Hwang, H. (2013). Defect engineering using bilayer structure in filament-type RRAM. IEEE Electron Device Letters, 34(10), 1250–1252.

    Article  CAS  Google Scholar 

  55. Phark, S.-H., & Chae, S. C. (2015). Initial defect configuration in NiO film for reliable unipolar resistance switching of Pt/NiO/Pt structure. Journal of Physics D: Applied Physics, 48, 155102.

    Article  CAS  Google Scholar 

  56. Lee, M.-J., Han, S., Jeon, S. H., Park, B. H., Kang, B. S., Ahn, S.-E., Kim, K. H., Lee, C. B., Kim, C. J., Yoo, I.-K., Seo, D. H., Li, X.-S., Park, J.-B., Lee, J.-H., & Park, Y. (2009). Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Letters, 9(4), 1476–1481.

    Article  CAS  Google Scholar 

  57. Kondo, H., Arita, M., Fujii, T., Kaji, H., Moniwa, M., Yamaguchi, T., Fujiwara, I., Yoshimaru, M., & Takahashi, Y. (2011). The observation of “Conduction Spot” on NiO resistance random access memory. Japanese Journal of Applied Physics, 50(8), 081101.

    Article  CAS  Google Scholar 

  58. Larentis, S., Nardi, F., Balatti, S., Member, S., Gilmer, D. C., & Ielmini, D. (2012). Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: modeling. IEEE Transactions on Electron Devices, 59(9), 2468–2475.

    Article  Google Scholar 

  59. Jeong, D. S., Schroeder, H., & Waser, R. (2007). Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochemical and Solid-State Letters, 10(8), G51–G53.

    Article  CAS  Google Scholar 

  60. Uenuma, M., Ishikawa, Y., & Uraoka, Y. (2015). Joule heating effect in nonpolar and bipolar resistive random access memory. Applied Physics Letters, 107(7).

    Google Scholar 

  61. Caldwell, M. A., Jeyasingh, R. G. D., Wong, H.-S. P., & Milliron, D. J. (2012). Nanoscale phase change memory materials. Nanoscale, 4(15), 4382–4392.

    Article  CAS  Google Scholar 

  62. Shao, R., Zheng, K., Chen, Y., Zhang, B., Deng, Q., Jiao, L., Liao, Z., Zhang, Z., Zou, J., & Han, X. (2016). Direct observation of structural transitions in the phase change material Ge2Sb2Te5. Journal of Materials Chemistry C, 4(39), 9303–9309.

    Article  CAS  Google Scholar 

  63. Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered structures. Physical Review Letters, 21(20), 1450–1453.

    Article  Google Scholar 

  64. Lyeo, H.-K., Cahill, D. G., Lee, B.-S., Abelson, J. R., Kwon, M.-H., Kim, K.-B., Bishop, S. G., & Cheong, B.-K. (2006). Thermal conductivity of phase-change material Ge2Sb2Te5. Applied Physics Letters, 89(15).

    Google Scholar 

  65. Stocker, H. J. (1970). Phenomenology of switching and memoryeffects in semiconducting chalcogenide glasses. Journal of Non-Crystalline Solids, 2, 371–381.

    Article  CAS  Google Scholar 

  66. Matsunaga, T., & Yamada, N. (2004). Structural investigation of GeSb2Te4: A high-speed phase-change material. Physical Review B, 69(10), 104111.

    Article  CAS  Google Scholar 

  67. Salinga, M., Kersting, B., Ronneberger, I., Jonnalagadda, V. P., Vu, X. T., Le Gallo, M., Giannopoulos, I., Cojocaru-Mirédin, O., Mazzarello, R., & Sebastian, A. (2018). Monatomic phase change memory. Nature Materials, 17(8), 681–685.

    Article  CAS  Google Scholar 

  68. Raoux, S., Cheng, H.-Y., Jordan-Sweet, J. L., Muñoz, B., & Hitzbleck, M. (2009). Influence of interfaces and doping on the crystallization temperature of Ge–Sb. Applied Physics Letters, 94(18).

    Google Scholar 

  69. Tsymbal, E. Y., Gruverman, A., Garcia, V., Bibes, M., & Barthélémy, A. (2012). Ferroelectric and multiferroic tunnel junctions. MRS Bulletin, 37, 138–143.

    Article  CAS  Google Scholar 

  70. Stengel, M., Vanderbilt, D., & Spaldin, N. A. (2009). Enhancement of ferroelectricity at metal-oxide interfaces. Nature Materials, 8(5), 392–397.

    Article  CAS  Google Scholar 

  71. Garcia, V., & Bibes, M. (2014). Ferroelectric tunnel junctions for information storage and processing. Nature Communications, 5, 4289.

    Article  CAS  Google Scholar 

  72. Wen, Z., Li, C., Wu, D., Li, A., & Ming, N. (2013). Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nature Materials, 12(7), 617–621.

    Article  CAS  Google Scholar 

  73. Pantel, D., & Alexe, M. (2010). Electroresistance effects in ferroelectric tunnel barriers. Physical Review B, 82(13), 134105.

    Article  CAS  Google Scholar 

  74. Boyn, S., Girod, S., Garcia, V., Fusil, S., Xavier, S., Deranlot, C., Yamada, H., Carrétéro, C., Jacquet, E., Bibes, M., Barthélémy, A., & Grollier, J. (2014). High-performance ferroelectric memory based on fully patterned tunnel junctions. Applied Physics Letters, 104, 052909.

    Article  CAS  Google Scholar 

  75. Thomson, W. (1856). On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 8, 546–550.

    Google Scholar 

  76. Nickel, J. (1995). Magnetoresistance, SAL, dual stripe, spin valve. In GMR magnetoresistance overview (pp. 95–60).

    Google Scholar 

  77. Tsang, C., Chen, M.-M., Yogi, T., & Ju, K. (1990). Gigabit density recording using dual-element MR/inductive heads on thin-film disks. IEEE Transactions on Magnetics, 26, 1689–1693.

    Article  Google Scholar 

  78. Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., & Petroff, F. (1988). Giant magnetoresistance of (001) Fe/(001)Cr magnetic superlattices. Physics Review Letters, 61(21), 2472–2475.

    Article  CAS  Google Scholar 

  79. Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., & Piramanayagam, S. N. (2017). Spintronics based random access memory: a review. Materials Today, 20, 530–548.

    Article  Google Scholar 

  80. Wang, D., Anderson, J., & Daughton, J. M. (1997). Thermally stable, low saturation field, low hysteresis, high GMR CoFe/Cu multilayers. IEEE Transactions on Magnetics, 33, 3520–3522.

    Article  CAS  Google Scholar 

  81. Kowalska, E. (2018). Current-induced dynamics in hybrid geometry MgO-based spin-torque nano-oscillators (Dissertation, Technische Universitat Dresden).

    Google Scholar 

  82. Julliere, M. (1975). Tunnelling between ferromagnetic films. Physics Letters, 54A, 225–226.

    Article  CAS  Google Scholar 

  83. Wang, D., Nordman, C., Daughton, J. M., Qian, Z., & Fink, J. (2004). 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Transactions on Magnetics, 40(4), 2269–2271.

    Article  CAS  Google Scholar 

  84. Djayaprawira, D. D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., & Watanabe, N. (2005). 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Applied Physics Letters, 86(9).

    Google Scholar 

  85. Akerman, J. (2005). Toward a universal memory. Science, 308, 508–510.

    Article  CAS  Google Scholar 

  86. Slaughter, J. M., Rizzo, N. D., Janesky, J., Whig, R., Mancoff, F. B., Houssameddine, D., Sun, J. J., Aggarwal, S., Nagel, K., Deshpande, S., Alam, S. M., Andre, T., & LoPresti, P. (2012). High density ST-MRAM technology. IEEE.

    Google Scholar 

  87. Amiri, P. K., Wang, K. L., & Galatsis, K. (2013). Voltage-controlled magnetic anisotropy (VCMA) switch and magneto-electric memory (MERAM). U.S. patent application Ser., No. 14/082,118 filed.

    Google Scholar 

  88. Valenzuela, S. O., & Tinkham, M. (2006). Direct electronic measurement of the spin Hall effect. Nature, 442(7099), 176–179.

    Article  CAS  Google Scholar 

  89. Chung, S. W., Kishi, T., Park, J. W., Yoshikawa, M., Park, K. S., Nagase, T., Sunouchi, K., Kanaya, H., Kim, G. C., Lee, M. S., Noma, K., Yamamoto, A., Rho, K. M., Tsuchida, K., Chung, S. J., Yi, J. Y., Kim, H. S., Chun, Y. S., Oyamatsu, H., & Hong, S. J. (2016). 4Gbit density STT-MRAM using perpendicular MTJrealized with compact cell structure. IEEE.

    Google Scholar 

  90. Babbage’s Analytical Engine, 1834–1871. (Trial model). Science Museum. Retrieved 23 August 2017.

    Google Scholar 

  91. Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A., & Mohanty, P. (2004). A controllable nanomechanical memory element. Applied Physics Letters, 85(16), 3587–3589.

    Article  CAS  Google Scholar 

  92. Czaplewski, D. A., Patrizi, G. A., Kraus, G. M., Wendt, J. R., Nordquist, C. D., Wolfley, S. L., Baker, M. S., & de Boer, M. P. (2009). A nanomechanical switch for integration with CMOS logic. Journal of Micromechanics and Microengineering, 19(8), 085003.

    Article  CAS  Google Scholar 

  93. Pantazi, A., et al. (2008). Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 52(4/5), 493–511.

    Article  CAS  Google Scholar 

  94. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C.-L., & Lieber, C. M. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94–97.

    Article  CAS  Google Scholar 

  95. Feng, X. L., Matheny, M. H., Zorman, C. A., Mehregany, M., & Roukes, M. L. (2010). Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Letters, 10(8), 2891–2896.

    Article  CAS  Google Scholar 

  96. Lefèvre, R., Goffman, M. F., Derycke, V., Miko, C., Forro, L., Bourgoin, J. P., & Hesto, P. (2005). Scaling law in carbon nanotube electromechanical devices. Physics Review Letters, 95(18), 185504.

    Article  CAS  Google Scholar 

  97. Hiremath, R. K., Rabinal, M. H. K., & Mulimani, B. G. (2010). Dipole tuning of charge transport in molecular junctions. Physical Chemistry Chemical Physics, 12(11), 2564–2568.

    Article  CAS  Google Scholar 

  98. Avouris, P. (2002). Molecular electronics with carbon nanotubes. Accounts of Chemical Research, 35(12), 1026–1034.

    Article  CAS  Google Scholar 

  99. Kim, W. Y., Choi, Y. C., Min, S. K., Cho, Y., & Kim, K. S. (2009). Application of quantum chemistry to nanotechnology: Electron and spin transport in molecular devices. Chem Soc Rev, 38(8), 2319–2333.

    Article  CAS  Google Scholar 

  100. Tao, N. J. (2006). Electron transport in molecular junctions. Nature Nanotechnology, 1, 173–181.

    Article  CAS  Google Scholar 

  101. Sun, L., Diaz-Fernandez, Y. A., Gschneidtner, T. A., Westerlund, F., Lara-Avilab, S., & Moth-Poulsen, K. (2014). Single-molecule electronics: From chemical design to functional devices. Chemical Society Review, 43(21), 7378–7411.

    Article  CAS  Google Scholar 

  102. Hsu, J. W. P., Loo, Y. L., Lang, D. V., & Rogers, J. A. (2003). Nature of electrical contacts in a metal–molecule–semiconductor system. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(4), 1928–1935.

    Article  CAS  Google Scholar 

  103. Wold, D. J., & Frisbie, C. D. (2000). Formation of metal−molecule−metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. Journal of the American Chemical Society, 122(12), 2970–2971.

    Article  CAS  Google Scholar 

  104. Zhang, J. L., Zhong, J. Q., Lin, J. D., Hu, W. P., Wu, K., Xu, G. Q., Weeb, A. T. S., & Chen, W. (2015). Towards single molecule switches. Chemical Society Review, 44(10), 2998–3022.

    Article  CAS  Google Scholar 

  105. Xue, Y., & Datta, S. (1999). Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Physical Review B, 59, 7852–7855.

    Article  Google Scholar 

  106. Nitzan, A. (2001). A relationship between electron-transfer rates and molecular conduction. The Journal of Physical Chemistry A, 105(12), 2677–2679.

    Article  CAS  Google Scholar 

  107. Moore, A. M., Yeganeh, S., Yao, Y., Claridge, S. A., Tour, J. M., Ratner, M. A., & Weiss, P. S. (2010). Polarizabilities of adsorbed and assembled molecules: measuring the conductance through buried contacts. ACS Nano, 4(12), 7630–7636.

    Article  CAS  Google Scholar 

  108. Vahl, A., Carstensen, J., Kaps, S., Lupan, O., Strunskus, T., Adelung, R., & Faupel, F. (2019). Concept and modelling of memsensors as two terminal devices with enhanced capabilities in neuromorphic engineering. Nature Scientific Reports, 9, 4361.

    Article  CAS  Google Scholar 

  109. Kulkarni, S. (2007). Nanotechnology, principles and practices (1st ed.). New Delhi: Capital Publishing Company. Retrieved from https://www.springer.com/gp/book/9783319091709.

    Google Scholar 

  110. Han, S.-T., Hu, L., Wang, X., Zhou, Y., Zeng, Y.-J., Ruan, S., Pan, C., & Peng, Z. (2017). Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Advanced Science, 4(8), 1600435.

    Article  CAS  Google Scholar 

  111. Marta, R. Quantum dots: Harnessing the nanoscopic rainbow, chem13 news magazine. Retrieved from https://uwaterloo.ca/chem13-news-magazine/november017/feature/quantum-dots-harnessing-nanoscopic-rainbow. University of Waterloo, Waterloo, Ontario.

  112. Seung-Yun, T., Seng, T. & Simon, M. (2012). Non-volatile memory devices and application. ISBN: 1-58883-250-3.

    Google Scholar 

  113. Ganeshan, D., Xie, F., Sun, Q., Li, Y., & Wei, M. (2018). Plasmonic effects of silver nanoparticles embedded in the counter electrode on the enhanced performance of dye-sensitized solar cells. Langmuir, 34(19), 5367–5373.

    Article  CAS  Google Scholar 

  114. Chen, H., Shao, L., Lia, Q., & Wang, J. (2013). Gold nanorods and their plasmonic properties. Chemical Society Reviews, 42(7), 2679–2724.

    Article  CAS  Google Scholar 

  115. Shahbazyan, T. V. (2014, 22 January). (challenges)Plasmonics theory and advances in computational chemistry and physics. In Plasmonic: Theory & applications.

    Google Scholar 

  116. Zhong, Y., Malagari, S. D., Hamilton, T., & Wasserman, D. (2015). Review of mid-infrared plasmonic materials. Journal of Nanophotonics, 9, 093791.

    Article  CAS  Google Scholar 

  117. Green, M. (2010). The nature of quantum dot capping ligands. Journal of Materials Chemistry, 20, 5797–5809.

    Article  CAS  Google Scholar 

  118. Diwan, B. D. & Murugan, S. (2013). Role of size on effective band gap in silicon nano-solid. Proceedings of ICANMEET.

    Google Scholar 

  119. Campisi, S., Schiavoni, M., Chan-Thaw, C. E., & Villa, A. (2016). Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts, 6(12), 185–206.

    Article  CAS  Google Scholar 

  120. Vempati, S., Ertas, Y., & Uyar, T. (2013). Sensitive surface states and their passivation mechanism in CdS quantum dots. The Journal of Physical Chemistry C, 117(41), 21609–21618.

    Article  CAS  Google Scholar 

  121. Schoenhalz, A. L., Arantes, J. T., Fazzio, A., & Dalpian, G. M. (2010). Surface and quantum confinement effects in ZnO nanocrystals. The Journal of Physical Chemistry C, 114(43), 18293–18297.

    Article  CAS  Google Scholar 

  122. Rowland, C. E., Brown, C. W., III, Delehanty, J. B., & Medintz, I. L. (2016). Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 19(8), 464–477.

    Article  CAS  Google Scholar 

  123. Thanh, N. T. K., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114, 7610–7630.

    Article  CAS  Google Scholar 

  124. Rossmanith, R., Weiss, C. K., Geserick, J., Hüsing, N., Hörmann, U., Kaiser, U., & Landfester, K. (2008). Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chemistry of Materials, 20(18), 5768–5780.

    Article  CAS  Google Scholar 

  125. Vogel, N., Fischer, J., Mohammadi, R., Retsch, M., Butt, H.-J., Landfester, K., Weiss, C. K., & Kreiter, M. (2011). Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. Nano Letters, 11(2), 446–454.

    Article  CAS  Google Scholar 

  126. Knowles, K. E., Frederick, M. T., Tice, D. B., Morris-Cohen, A. J., & Weiss, E. A. (2011). Colloidal quantum dots: Think outside the (particle-in-a-)box. The Journal of Physical Chemistry Letters, 3(1), 18–26.

    Article  CAS  Google Scholar 

  127. Ko, Y., Baek, H., Kim, Y., Yoon, M., & Cho, J. (2013). Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano, 7(1), 143–153.

    Article  CAS  Google Scholar 

  128. Balocco, C., Song, A. M., & Missous, M. (2004). Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures. Applied Physics Letters, 85(24), 5911–5913.

    Article  CAS  Google Scholar 

  129. Geller, M., Marent, A., Nowozin, T., Bimberg, D., & Akçay, N. (2008). A write time of 6ns for quantum dot–based memory structures. Applied Physics Letters, 92(9), 092108.

    Article  CAS  Google Scholar 

  130. Lee, J.-S., Kim, Y.-M., Kwon, J.-H., Shin, H., Sohn, B.-H., & Lee, J. (2009). Tunable memory characteristics of nanostructured, nonvolatile charge trap memory devices based on a binary mixture of metal nanoparticles as a charge trapping layer. Advanced Materials, 21(2), 178–183.

    Article  CAS  Google Scholar 

  131. Jung, S. M., Kim, H.-J., Kim, B.-J., Kim, Y.-S., Yoon, T.-S., & Lee, H. H. (2010). Electrical charging of Au nanoparticles embedded by streptavidin-biotin biomolecular binding in organic memory device. Applied Physics Letters, 97(15), 153302.

    Article  CAS  Google Scholar 

  132. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., & Chan, K. (1996). A silicon nanocrystals based memory. Applied Physics Letters, 68, 1377–1379.

    Article  CAS  Google Scholar 

  133. Takahashi, N., Ishikuro, H., & Hiramoto, T. (2000). Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Applied Physics Letters, 76(2), 209–211.

    Article  CAS  Google Scholar 

  134. Zhang, T., Guerin, D., Alibart, F., Vuillaume, D., Lmimouni, K., Lenfant, S., Yassin, A., Ocafrain, M., Blanchard, P., & Roncali, J. (2017). Negative differential resistance, memory, and reconfigurable logic functions based on monolayer devices derived from gold nanoparticles functionalized with electropolymerizable TEDOT units. The Journal of Physical Chemistry C, 121, 10131–10139.

    Article  CAS  Google Scholar 

  135. Ouyang, J., & Yang, Y. (2010). Polymer: Metal nanoparticle devices with electrode-sensitive bipolar resistive switchings and their application as nonvolatile memory devices. Applied Physics Letters, 96, 063506.

    Article  CAS  Google Scholar 

  136. Haiwei, D., Wan, T., Qu, B., Cao, F., Lin, Q., Chen, N., Lin, X., & Chu, D. (2017). Engineering silver nanowire networks: From transparent electrodes to resistive switching devices. ACS Applied Materials & Interfaces, 9, 20762–20770.

    Article  CAS  Google Scholar 

  137. White, S. I., Vora, P. M., Kikkawa, J. M., & Winey, K. I. (2010). Resistive switching in bulk silver nanowire-polystyrene composites. Advanced Functional Materials, 21, 233–240.

    Article  CAS  Google Scholar 

  138. Padma, N., Betty, C. A., Samanta, S., & Nigam, A. (2017). Tunable switching characteristics of low operating voltage organic bistable memory devices based on gold nanoparticles and copper phthalocyanine thin films. The Journal of Physical Chemistry C, 121, 5768–5778.

    Article  CAS  Google Scholar 

  139. Hwang, B., & Lee, J.-S. (2018). Recent advances in memory devices with hybrid materials. Advanced Electronic Materials, 5, 1800519.

    Article  CAS  Google Scholar 

  140. Bozano, L. D., Kean, B. W., Beinhoff, M., Center, K. R., Rice, P. M., & Scott, J. C. (2005). Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Advanced Functional Materials, 15, 1933–1939.

    Article  CAS  Google Scholar 

  141. Sawa, A. (2008). Resistive switching in transition metal oxides. Materials Today, 11, 28–39.

    Article  CAS  Google Scholar 

  142. Liu, X. J., Li, X. M., Yu, W. D., Wang, Q., Yang, R., Cao, X., & Chen, L. D. (2009). Bipolar resistance switching property of Al-Ag/La0.3Ca0.7MnO3/Pt sandwitches. Journal of Ceramic Society of Japan, 117(6), 732.

    Article  CAS  Google Scholar 

  143. Fujimoto, M., Koyama, H., Kobayashi, S., Tamai, Y., Awaya, N., Nishi, Y., & Suzuki, T. (2005). Resistivity and resistive switching properties of Pr 0.7 Ca 0.3 MnO3 thin films. Journal of Applied Physics, 97, 10H709.

    Article  CAS  Google Scholar 

  144. Liu, C.-Y., & Tseng, T.-Y. (2007). Resistance switching properties of sol–gel derived SrZrO3 based memory thin films. Journal of Physics D: Applied Physics, 40, 2157.

    Article  CAS  Google Scholar 

  145. Seo, S., Lee, M. J., Seo, D. H., Jeoung, E. J., Suh, D.-S., Joung, Y. S., & Yoo, I. K. (2004). Reproducible resistance switching in polycrystalline NiO films. Applied Physics Letters, 85, 5655–5657.

    Article  CAS  Google Scholar 

  146. Lee, M.-J., Ahn, S.-E., Lee, C. B., Kim, C.-J., Jeon, S., Chung, U.-I., Yoo, I.-K., Park, G.-S., Han, S., Hwang, I. R., & Park, B.-H. (2011). A simple device unit consisting of All NiO storage and switch elements for multilevel terabit nonvolatile random access memory. ACS Applied Materials & Interfaces, 3, 4475–4479.

    Article  CAS  Google Scholar 

  147. He, L., Liao, Z.-M., Wu, H.-C., Tian, X.-X., Xu, D.-S., Cross, G. L. W., Duesberg, G. S., Shvets, I. V., & Yu, D.-P. (2011). Memory and threshold resistance switching in Ni/NiO core–shell nanowires. Nano Letters, 11, 4601–4606.

    Article  CAS  Google Scholar 

  148. Yang, Y., Zhang, X., Gao, M., Zeng, F., Zhou, W., Xie, S., & Pan, F. (2011). Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale, 3, 1917.

    Article  CAS  Google Scholar 

  149. Raffone, F., Risplendi, F., & Cicero, G. (2016). A new theoretical insight into ZnO NWs memristive behavior. Nano Letters, 16, 2543–2547.

    Article  CAS  Google Scholar 

  150. Porro, S., Risplendi, F., Cicero, G., Bejtka, K., Milano, G., Rivolo, P., Jasmin, A., Chiolerio, A., Pirriab, C. F., & Ricciardi, C. (2017). Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states. Journal of Materials Chemistry, C5, 10517–10523.

    Google Scholar 

  151. Wang, J., Sun, B., Gao, F., & Greenham, N. C. (2010). Memristive devices based on solution-processed ZnO nanocrystals. Physica Status Solidi (a), 207, 484–487.

    Article  CAS  Google Scholar 

  152. Rosa, J., Kiazadeh, A., Santos, L., Deuermeier, J., Martins, R., Gomes, H. L., & Fortunato, E. (2017). Memristors Using Solution-Based IGZO Nanoparticles. ACS Omega, 2, 8366–8372.

    Article  CAS  Google Scholar 

  153. Qi, J., Olmedo, M., Ren, J., Zhan, N., Zhao, J., Zheng, J.-G., & Liu, J. (2012). Resistive switching in single epitaxial ZnO nanoislands. ACS Nano, 6, 1051–1058.

    Article  CAS  Google Scholar 

  154. Rehman, S., Hur, J.-H., & Kim, D.-k. (2018). Resistive switching in solution-processed copper oxide (CuxO) by stoichiometry tuning. The Journal of Physical Chemistry C, 122, 11076–11085.

    Article  CAS  Google Scholar 

  155. Pawara, P. S., Tikkea, R. S., Patila, V. B., Mullania, N. B., Waifalkarb, P. P., Khotc, K. V., Telib, A. M., Sheikha, A. D., & Dongale, T. D. (2017). A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Materials Science in Semiconductor Processing, 71, 102–108.

    Article  CAS  Google Scholar 

  156. Khot, A. C., Desai, N. D., Khot, K. V., Salunkhe, M. M., Chougule, M. A., Bhave, T. M., Kamat, R. K., Musselman, K. P., & Dongale, T. D. (2018). Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: Effect of growth temperature. Materials & Design, 151, 37–47.

    Article  CAS  Google Scholar 

  157. Duraisamy, N., Muhammad, N. M., Kim, H.-C., Jo, J.-D., & Choi, K.-H. (2012). Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films, 520, 5070–5074.

    Article  CAS  Google Scholar 

  158. Qingjiang, L., Khiat, A., Salaoru, I., Papavassiliou, C., Hui, X., & Prodromakis, T. (2014). Memory Impedance in TiO2 based metal-insulator-metal devices. Scientific Reports, 4, 4522.

    Article  CAS  Google Scholar 

  159. Manning, H. G., Biswas, S., Holmes, J. D., & Boland, J. J. (2017). Nonpolar resistive switching in Ag@TiO2 core–shell nanowires. ACS Applied Materials & Interfaces, 9, 38959–38966.

    Article  CAS  Google Scholar 

  160. Qian, K., Cai, G., Nguyen, V. C., Chen, T., & Lee, P. S. (2016). Direct observation of conducting filaments in tungsten oxide based transparent resistive switching memory. ACS Applied Materials & Interfaces, 8, 27885–27891.

    Article  CAS  Google Scholar 

  161. Hubbard, W. A., Kerelsky, A., Jasmin, G., White, E. R., Lodico, J., Mecklenburg, M., & Regan, B. C. (2015). Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Letters, 15, 3983.

    Article  CAS  Google Scholar 

  162. Sharma, B., & Rabinal, M. K. (2016). A simple dip coat patterning of aluminum oxide to constitute a bistable memristor. Materials Research Express, 3, 126302.

    Article  CAS  Google Scholar 

  163. Stathopoulos, S., Khiat, A., Trapatseli, M., Cortese, S., Serb, A., Valov, I., & Prodromakis, T. (2017). Multibit memory operation of metal-oxide bi-layer memristors. Scientific Reports, 7, 17532.

    Article  CAS  Google Scholar 

  164. Rahaman, S. Z., Maikap, S., Tien, T.-C., Lee, H.-Y., Chen, W.-S., Chen, F. T., Kao, M.-J., & Tsai, M.-J. (2012). Excellent resistive memory characteristics and switching mechanism using Ti nanolayer at Cu/TaOX interface. Nanoscale Research Letters, 7, 345.

    Article  CAS  Google Scholar 

  165. Dearnaley, G., Stoneham, A. M., & Morgan, D. V. (1970). Electrical phenomena in amorphous oxide films. Reports on Progress in Physics, 33, 1129.

    Article  Google Scholar 

  166. Mardare, A. I., Mardare, C. C., Kollender, J. P., Huber, S., & Hassel, A. W. (2018). Basic properties mapping of anodic oxides in the hafnium–niobium–tantalum ternary system. Science and Technology of Advanced Materials, 19, 554.

    Article  CAS  Google Scholar 

  167. Nandakumar, S. R., Minvielle, M., Nagar, S., Dubourdieu, C., & Rajendran, B. (2016). A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano Letters, 16, 1602–1608.

    Article  CAS  Google Scholar 

  168. Yoon, C., Lee, J. H., Lee, S., Jeon, J. H., Jang, J. T., Kim, D. H., Kim, Y. H., & Park, B. H. (2017). Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction. ACS Nano Letters, 17, 1949–1955.

    Article  CAS  Google Scholar 

  169. Hwang, C. S. (2015). Prospective of semiconductor memory devices: From memory system to materials. Advanced Electronic Materials, 1(6).

    Google Scholar 

  170. Onyia, A. I., Ikeri, H. I., & Nwobodo, A. N. (2008). Theoretical study of the quantum confinement Effects on quantum dots using particle in a box model. Journal of Physical Chemistry C, 112, 11290–11294.

    Article  CAS  Google Scholar 

  171. Zhuge, F., Li, K., Bing, F., Zhang, H., Li, J., Chen, H., Liang, L., Gao, J., Cao, H., Liu, Z., & Luo, H. (2015). Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Advances, 5, 057125.

    Article  CAS  Google Scholar 

  172. Zhang, H., Zhang, Y., Yu, Y., Song, X., Zhang, H., Cao, M., Che, Y., Dai, H., Yang, J., & Yao, J. (2017). Ambipolar quantum-dot-based low-voltage nonvolatile memory with double floating Gates. ACS Photonics, 4(9), 2220–2227.

    Article  CAS  Google Scholar 

  173. Cheng, P., Sun, K., & Hu, Y. H. (2016). Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. ACS Nano Letters, 16, 572–576.

    Article  CAS  Google Scholar 

  174. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014). Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8(2), 1102–1120.

    Article  CAS  Google Scholar 

  175. Zhang, P., Xu, B., Gao, C., Chen, G., & Gao, M. (2016). Facile synthesis of Co9Se8 quantum dots as charge traps for flexible organic resistive switching memory device. ACS Applied Materials & Interfaces, 8(44), 30336–30343.

    Article  CAS  Google Scholar 

  176. Lutz, C., Hasegawa, T., & Chikyow, T. (2016). Ag2S atomic switch-based ‘tug of war’ for decision making. Nanoscale, 8(29), 14031–14036.

    Article  CAS  Google Scholar 

  177. Gubicza, A., Csontos, M., Halbritterab, A., & Mihályab, G. (2015). Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices. Nanoscale, 7(10), 4394–4399.

    Article  CAS  Google Scholar 

  178. Han, S.-T., Zhou, Y., Zhou, L., Yan, Y., Huang, L.-B., Wuab, W., & Roy, V. A. L. (2015). cdse/zns core–shell quantum dots charge trapping layer for flexible photonic memory. Journal of Materials Chemistry C, 3(13), 3173–3180.

    Article  CAS  Google Scholar 

  179. Kilina, S. V., Kilin, D. S., Prezhdo, V. V., & Prezhdo, O. V. (2011). Theoretical study of electron–phonon relaxation in PbSe and CdSe quantum dots: Evidence for phonon memory. The Journal of Physical Chemistry C, 115(44), 21641–21651.

    Article  CAS  Google Scholar 

  180. Yun, D. Y., Song, W. S., Kim, T. W., Kim, S. W., & Kim, S. W. (2012). Electrical stabilities and carrier transport mechanisms of flexible organic bistable devices based on CdSe-InP core-shellnanoparticle/polystyrene nanocomposites. Applied Physics Letters, 101(10), 103305.

    Article  CAS  Google Scholar 

  181. Kim, D. H., Wu, C., Park, D. H., Kim, W. K., Seo, H. W., Kim, S. W., & Kim, T. W. (2018). Flexible memristive devices based on InP/ZnSe/ZnS core-multishell quantum dot nanocomposites. ACS Applied Materials & Interfaces, 10(17), 14843–14849.

    Article  CAS  Google Scholar 

  182. Mohanta, K., Rivas, J., & Pai, R. K. (2012). Reverse switching phenomena in hybrid organic–inorganic thin film composite material. The Journal of Physical Chemistry C, 117(1), 124–130.

    Article  CAS  Google Scholar 

  183. Ghosh, B., Sahu, S., & Pal, A. J. (2008). Core-shell nanoparticles: An approach to enhance electrical bistability. The Journal of Physical Chemistry C, 112, 11290–11294.

    Article  CAS  Google Scholar 

  184. Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A. K., Ferrari, A. C., & Lanza, M. (2017). Graphene and related materials for resistive random access memories. Advanced Electronic Materials, 3, 1600195.

    Article  CAS  Google Scholar 

  185. Park, M., Park, S., & Yoo, K.-H. (2016). Multilevel nonvolatile memristive and memcapacitive switching in stacked graphene sheets. ACS Applied Materials & Interfaces, 8, 14046–14052.

    Article  CAS  Google Scholar 

  186. Ali, J., Siddiqui, G.-u.-d., Yang, Y. J., Lee, K. T., Umb, K., & Choi, K. H. (2016). Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching arrays. RSC Advances, 6, 5068–5078.

    Article  CAS  Google Scholar 

  187. Jacob, M. V., Rawat, R. S., Ouyang, B., Bazaka, K., Kumar, D. S., Taguchi, D., Iwamoto, M., Neupane, R., & Varghese, O. K. (2015). Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Letters, 15, 5702–5708.

    Article  CAS  Google Scholar 

  188. Kim, H.-J., Jung, S. M., Kim, Y.-H., Kim, B.-J., Ha, S., Kim, Y.-S., Yoon, T.-S., & Lee, H. H. (2011). Characterization of gold nanoparticle pentacene memory device with polymer dielectric layer. Thin Solid Films, 519, 6140–6143.

    Article  CAS  Google Scholar 

  189. Wang, C., He, W., Tong, Y., Zhang, Y., Huang, K., Song, L., Zhong, S., Ganeshkumar, R., & Zhao, R. (2017). Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small, 13, 1603435.

    Article  CAS  Google Scholar 

  190. Kim, K. L., Lee, W., Hwang, S. K., Joo, S. H., Cho, S. M., Song, G., Cho, S. H., Jeong, B., Hwang, I., Ahn, J.-H., Yu, Y.-J., Shin, T. J., Kwak, S. K., Kang, S. J., & Park, C. (2015). Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory. Nano Letters, 16, 334–340.

    Article  CAS  Google Scholar 

  191. Kim, Y. H., Lee, E. Y., Lee, H. H., & Seo, T. S. (2017). Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Applied Materials & Interfaces, 9, 16375–16380.

    Article  CAS  Google Scholar 

  192. Yan, X., Zhang, L., Yang, Y., Zhou, Z., Zhao, J., Zhang, Y., Liud, Q., & Chen, J. (2017). Highly improved performance in Zr0.5Hf0.5O2 films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory. Journal of Materials Chemistry C, 5, 11046.

    Article  CAS  Google Scholar 

  193. Pósa, L., Abbassi, E. M., Makk, P., Sánta, B., Nef, C., Csontos, M., Calame, M., & Halbritter, A. (2017). Multiple physical time scales and dead time rule in few-nanometers sized graphene–SiOx-graphene memristors. Nano Letters, 17, 6783–6789.

    Article  CAS  Google Scholar 

  194. Qi, M., Liang, B., Xu, H., Wang, Z., Kang, Z., Zhao, X., Liu, W., Jiangang, M., & Liua, Y. (2018). Oxidized carbon quantum dot–graphene oxide nanocomposites for improving data retention of resistive switching memory. Journal of Materials Chemistry C, 6, 2026–2033.

    Article  CAS  Google Scholar 

  195. Fan, F., Zhang, B., Cao, Y., Yang, X., Gu, J., & Chen, Y. (2017). Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices. Nanoscale, 9, 10610–10618.

    Article  CAS  Google Scholar 

  196. Che, Y., Zhang, Y., Cao, X., Song, X., Cao, M., Dai, H., Yang, J., Zhangab, G., & Yao, J. (2016). Low operating voltage ambipolar graphene oxide-floating-gate memory devices based on quantum dots. Journal of Materials Chemistry C, 4, 1420–1424.

    Article  CAS  Google Scholar 

  197. Wu, C., Li, F., Zhang, Y., Guo, T., & Chen, T. (2011). Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite. Applied Physics Letters, 99, 042108.

    Article  CAS  Google Scholar 

  198. Pan, X., & Skafidas, E. (2016). Resonant tunneling based graphene quantum dot memristors. Nanoscale, 8, 20074–20079.

    Article  CAS  Google Scholar 

  199. Zhuge, F., Hu, B.-L., He, C., Li, R.-W., Zhou, X., & Liu, Z. (2011). Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 49, 3796–3802.

    Article  CAS  Google Scholar 

  200. Jeong, H. Y., Kim, J. Y., Kim, J. W., Hwang, J. O., Kim, J. E., Lee, J. Y., Yoon, T. H., Cho, B. J., Kim, S. O., Ruoff, R. S., & Choi, S. Y. (2010). Graphene oxide thin films for flexible nonvolatile memory applications. Nano Letters, 10, 4381–4386.

    Article  CAS  Google Scholar 

  201. Hwang, S. K., Lee, J. M., Kim, S., Park, J. S., Park, H. I., Ahn, C. W., Lee, K. J., Lee, T., & Kim, S. O. (2012). Flexible multilevel resistive memory with controlled charge trap B- and N-doped carbon nanotubes. Nano Letters, 12, 2217–2221.

    Article  CAS  Google Scholar 

  202. Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279.

    Article  CAS  Google Scholar 

  203. Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–organic framework materials as chemical sensors. Chemical Reviews, 112, 1105–1125.

    Article  CAS  Google Scholar 

  204. Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404, 982–986.

    Article  CAS  Google Scholar 

  205. Huang, R., Cai, Y., Liu, Y., Bai, W., Kuang, Y., & Wang, Y. (2014). Resistive switching in organic memory devices for flexible applications. IEEE, 838.

    Google Scholar 

  206. Gao, S., Yi, X., Shang, J., Liu, G., & Li, R.-W. (2019). Organic and hybrid resistive switching materials and devices. Chemical Society Reviews, 48, 1531. https://doi.org/10.1039/c8cs00614h.

    Article  CAS  Google Scholar 

  207. Qia, Y., Suna, B., Fuc, G., Lib, T., Zhua, S., Liang, Z., Maoa, S., Kanb, X., Leib, M., & Chen, Y. (2019). A nonvolatile organic resistive switching memory based on lotus leaves. Chemical Physics, 516, 168–174.

    Article  CAS  Google Scholar 

  208. Biswas, B., Chowdhury, A., Sanyal, M. K., Majumder, M., & Mallik, B. (2013). Electric field induced tunable bistable conductance switching and the memory effect of thiol capped CdS quantum dots embedded in poly(methyl methacrylate) thin films. Journal of Materials Chemistry C, 1, 1211–1222.

    Article  CAS  Google Scholar 

  209. Yoon, S. M., Warren, S. C., & Grzybowski, B. A. (2014). Storage of Electrical Information in Metal-Organic-Framework Memristors. Angewandte Chemie, 126, 4526–4530.

    Article  Google Scholar 

  210. Verbakel, F., Meskers, S. C. J., de Leeuw, D. M., & Janssen, R. A. J. (2008). Resistive switching in organic memories with a spin-coated metal oxide nanoparticle layer. The Journal of Physical Chemistry C, 112, 5254–5257.

    Article  CAS  Google Scholar 

  211. Lu, H., Chen, Y., Chang, Q., Cheng, S., Ding, Y., Chen, J., Xiu, F., Wang, X., Ban, C., Liu, Z., Liu, J., & Huang, W. (2018). Polymer–carbon dot hybrid structure for a self-rectifying memory device by energy level offset and doping. RSC Advances, 8, 13917–13920.

    Article  CAS  Google Scholar 

  212. Pham, N. K., Vu, N. H., Van Pham, V., Ta, H. K. T., Cao, T. M., Thoaid, N., & Tran, V. C. (2018). Comprehensive resistive switching behavior of hybrid polyvinyl alcohol and TiO2 nanotube nanocomposites identified by combining experimental and density functional theory studies. Journal of Materials Chemistry C, 6, 1971–1979.

    Article  CAS  Google Scholar 

  213. Cheong, S., Kim, Y., Kwon, T., Kim, B. J., & Cho, J. (2013). Inorganic nanoparticle multilayers using photo-crosslinking layer-by-layer assembly and their applications in nonvolatile memory devices. Nanoscale, 5, 12356.

    Article  CAS  Google Scholar 

  214. Meng, L., Lan, M., Liang, G., Xie, L., Wang, H., Ge, J., Liu, W., Wang, Y., & Wang, P. (2015). Nonvolatile memory devices based on carbon nano-dot doped poly(vinyl alcohol) composites with low operation voltage and high ON/OFF ratio. RSC Advances, 5, 26886–26890.

    Article  CAS  Google Scholar 

  215. Jeong, Y. J., Yun, D. J., Noh, S. H., Park, C. E., & Jang, J. (2018). Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories. ACS Nano, 12, 7701–7709.

    Article  CAS  Google Scholar 

  216. Li, G. L., Liu, G., Li, M., Wan, D., Neoh, K. G., & Kang, E. T. (2010). Organo- and water-dispersible graphene oxide−polymer nanosheets for organic electronic memory and gold nanocomposites. The Journal of Physical Chemistry C, 114, 12742–12748.

    Article  CAS  Google Scholar 

  217. Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano-Gotarredona, T., Linares-Barranco, B., & Vuillaume, D. (2011). A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing. Advanced Functional Materials, 22, 609–616.

    Article  Google Scholar 

  218. Shao, Y., Fang, Y., Li, T., Wang, Q., Dong, Q., Deng, Y., Yuan, Y., Wei, H., Wang, M., Gruverman, A., Shielda, J., & Huang, J. (2016). Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy & Environmental Science, 9, 1752–1759.

    Article  CAS  Google Scholar 

  219. Siddiqui, G. U., Rehman, M. M., Yang, Y.-J., & Choi, K. H. (2017). A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. Journal of Materials Chemistry C, 5, 862–871.

    Article  Google Scholar 

  220. Yan, K., Chen, B., Hu, H., Chen, S., Xue, G., Xiao, X., Zhou, J., & Zou, D. (2016). First fiber-shaped non-volatile memory device based on hybrid organic-inorganic perovskite. Advanced Electronic Materials, 2, 1600160.

    Article  CAS  Google Scholar 

  221. Hota, M. K., Bera, M. K., Kundu, B., Kundu, S. C., & Maiti, C. K. (2012). A natural silk fibroin protein-based transparent bio-memristor. Advanced Functional Materials, 22(21), 4493–4499.

    Article  CAS  Google Scholar 

  222. Lv, Z., Zhou, Y., Han, S.-T., & Roy, V. A. L. (2018). From biomaterial-based data storage to bio-inspired artificial synapse. Materials today, 21, 537–552.

    Article  CAS  Google Scholar 

  223. Murgunde, B. K., Rabinal, M. K., & Kalasad, M. N. (2018). Biologically active nanocomposite of DNA-PbS nanoparticles: A new material for non-volatile memory devices. Applied Surface Science, 427, 344–353.

    Article  CAS  Google Scholar 

  224. Murgunde, B. K., & Rabinal, M. K. (2017). Solution processed bilayer junction of silk fibroin and semiconductor quantum dots as multilevel memristor devices. Organic Electronics, 48, 276–284.

    Article  CAS  Google Scholar 

  225. Chu, H.-L., Chiu, S.-C., Sung, C.-F., Tseng, W., Chang, Y.-C., Jian, W.-B., Chen, Y.-C., Yuan, C.-J., Li, H.-Y., Gu, F. X., Di Ventra, M., & Chang, C.-C. (2014). Programmable redox state of the nickel ion chain in DNA. Nano Letters, 14, 1026–1031.

    Article  CAS  Google Scholar 

  226. Lee, T., Yagati, A. K., Pi, F., Sharma, A., Choi, J.-W., & Guo, P. (2015). Construction of RNA–quantum dot chimera for nanoscale resistive biomemory application. ACS Nano, 9, 6675–6682.

    Article  CAS  Google Scholar 

  227. Xing, Y., Shi, C., Zhao, J., Qiu, W., Lin, N., Wang, J., Yan, X. B., Yu, W. D., & Liu, X. Y. (2017). Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse. Small, 13, 1702390.

    Article  CAS  Google Scholar 

  228. Portney, N. G., Martinez-Morales, A. A., & Ozkan, M. (2008). Nanoscale memory characterization of virus-templated semiconducting quantum dots. ACS Nano, 2, 191–196.

    Article  CAS  Google Scholar 

  229. Lim, Z. X., & Cheong, K. Y. (2015). Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Physical Chemistry Chemical Physics, 17, 26833–26853.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hussain K. Rabinal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S., Mulla, R., Kalasad, M.N., Rabinal, M.H.K. (2020). Quantum Dot Interfaces for Memristor. In: Yu, P., Wang, Z. (eds) Quantum Dot Optoelectronic Devices. Lecture Notes in Nanoscale Science and Technology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-35813-6_9

Download citation

Publish with us

Policies and ethics