Skip to main content

Bacterial Polysaccharides Versatile Medical Uses

  • Living reference work entry
  • First Online:
  • 56 Accesses

Abstract

During the last years, a lot of research results have been published concerning to new approaches to extend the use of microbial and particularly bacterial polysaccharides, in pharmaceutical and medical practice. Most of them were focused on new developments of already well-known, authorized on the health market, commercial polysaccharides (dextran, hyaluronic acid, xanthan, gellan, bacterial cellulose, levan), but regarding new derivatives and associations, having in view the progress in nanomedicine and preparative techniques. An overview of the state of the art in the main directions of research, starting from their present recognized applications, is presented, trying to notice challenges and perspectives. Efficient targeting and for controlled release drug carriers, especially of antitumor hydrophobic, low water soluble drugs, topical therapeutic agents, especially for wound healing, suitable scaffolds in tissue engineering, surgery, have been given major attention. Attempts of new producing strains and products were also mentioned. Among the challenges, the necessity of ensuring a competitive ratio price/performance and full completion of the steps, especially in nonclinical (preclinical) development of an innovative/improved medicine or medical device, are highlighted.

This is a preview of subscription content, log in via an institution.

References

  • Abba M, Ibrahim Z, Chong CS, Zawawi NA, Kadir MRA, Yusof AHM, Razak SIA. Transdermal delivery of crocin using bacterial cellulose membrane. Fibers Polym. 2019;20:2025–31. https://doi.org/10.1007/s12221-019-9076-8.

    Article  CAS  Google Scholar 

  • Abeer MM, Amin MCIM, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol. 2014;66:1047–61.

    Article  CAS  Google Scholar 

  • Alibolandi M, Abnous K, Hadizadeh F, Taghdisi SM, Alabdollah F, Mohammadi M, Nassirli H, Ramezani M. Dextran-polylactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinoma in vitro and in vivo. J Control Release. 2016;241:45–56. https://doi.org/10.1016/j.jconrel.2016.09.012.

  • Alves A, Miguel SP, Araujo ARTS, de Jesús Valle MJ, Navarro AS, Correia IJ, Ribeiro MP, Coutinho P. Xanthan gum–konjac glucomannan blend hydrogel for wound healing. Polymers. 2020;12:99. https://doi.org/10.3390/polym12010099.

  • Andrew M, Jayaraman G. Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res. 2020;487:107881. https://doi.org/10.1016/j.carres.2019.107881.

    Article  CAS  PubMed  Google Scholar 

  • Arjama M, Sivaraj M, Rajan M, Jeyaraj M. Sericin/RBA embedded gellan gum based smart nanosystem for pH responsive drug delivery. I J Biol Macromol. 2018;120 Part. B:1561–1571. https://doi.org/10.1016/j.ijbiomac.2018.09.146.

  • Asker MMS, Ibrahim AY, Mahmoud MG, Mohamed SS. Production and characterization of exopolysaccharide from novel Bacillus sp. M3 and evaluation on development sub-chronic aluminum toxicity induced Alzheimer’s disease in male rats. Am J Biochem Biotechnol. 2015;11(2):92–103. https://doi.org/10.3844/ajbbsp.2015.92.103.

  • Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(e03719):1–13. https://doi.org/10.1016/j.heliyon.2020.e03719.

    Article  Google Scholar 

  • Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM. Bacterial cellulose as a raw material for food and food packaging applications. Front Sust Food Syst. 2019;3:7. https://doi.org/10.3389/fsufs.2019.00007.

  • Bae KH, Lee F, Xu K, Keng CT, Tan SY, Tan YJ, Chen Q, Kurisawa M. Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs. Biomaterials. 2015;63:146–157. https://doi.org/10.1016/j.biomaterials.2015.06.008.

  • Bai S, Gao YE, Ma X, Shi X, Hou M, Xue P, Kang Y, Xu Z. Reduction stimuli responsive unimolecular polymeric prodrug based on amphiphilic dextran-framework for antitumor drug delivery. Carbohydr Polym. 2018;182:235–44. https://doi.org/10.1016/j.carbpol.2017.11.028.

    Article  CAS  PubMed  Google Scholar 

  • Beck EC, Lohman B, Tabakh D, Kieweg SL, Gehrke SH, Berkland CJ, Detamore MS. Enabling surgical placement of hydrogels through achieving paste-like rheological behavior in hydrogel precursor solutions. Annals of Biomedical Engineering. 2015;43(10):2569–2576. https://doi.org/10.1007/s10439-015-1277-8.

  • Bouallegue A, Casillo A, Chaari F, La Gatta A, Lanzetta R, Corsaro MM, Bachoual R, Ellouz-Chaabouni S. Levan from a new isolated Bacillus subtilis AF17: purification, structural analysis, and antioxidant activities. Int J Biol Macromol. 2020;144:316–324. https://doi.org/10.1016/j.ijbiomac.2019.12.108.

  • Catanzano O, D’Esposito V, Acierno S, Ambrosio MR, De Caro C, Avagliano C, Russo P, Russo R, Miro A, Ungaro F, Calignano A, Formisano P, Quaglia F. Alginate-hyaluronan composite hydrogels accelerate wound healing process. Carbohydr Polym. 2015;131:407–414. https://doi.org/10.1016/j.carbpol.2015.05.081.

  • Chen N, Johnson MM, Collier MA, Gallovic MD, Bachelder EM, Ainslie KM. Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. J Control Release. 2018;273:147–159. https://doi.org/10.1016/jconrel.2018.01.027.

  • Curcio M, Cirillo G, Paolì A, Naimo GD, Mauro L, Amantea D, Leggio A, Fiore PN, Iemma F. Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids Surf B: Biointerfaces. 2020;185:110537. https://doi.org/10.1016/j.colsurfb.2019.110537.

    Article  CAS  PubMed  Google Scholar 

  • Duymaz BT, Erdiler FB, Alan T, Aydogdu MO, Inan AT, Ekren N, Uzun M, Sahin YM, Bulus E, Oktar FN, Selvi SS, Oner ET, Kilic O, Bostan MS, Eroglu MS, Gunduz O. 3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering:Characterization of the cellular behavior. Eur Polym J. 2019;119:426–37. https://doi.org/10.1016/j.eurpolymj.2019.08.015.

    Article  CAS  Google Scholar 

  • Elzayat EA, Corcos J. Urethral injectables in the management of stress urinary incontinence. Chapter 31. In: Rez S, Rodriguez LV, editors. Female Urology. 3rd ed. Elsevier; 2008. p. 348–61.

    Chapter  Google Scholar 

  • Farag MMS, Moghannem SAM, Shehabeldine AM, Azab MS. Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb Pathog. 2020;140:103947. https://doi.org/10.1016/j.micpath.2019.103947.

    Article  CAS  PubMed  Google Scholar 

  • Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, Future Medicine Ltd. 2018; https://doi.org/10.2217/nnm-2018-0120.

  • Fernandez-Piñeiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 2017;35:350–60. https://doi.org/10.1016/j.biotechadv.2017.03.002.

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MAM. Bacterial polysaccharides: Production and applications in cosmetic industry. In: Ramavat KG, Merillon JM, editors. Polysaccharides – Bioactivity and Biotechnology. Springer International; 2014;66:2017–43. 

    Google Scholar 

  • Giammona G, Pitarresi G, Palumbo FS, Maraldi S, Scarponi S, Romanò CL. Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics and Trauma: From Basic Research to Clinical Applications. Hydrogels. Intechopen; 2018;9:179–201. https://doi.org/10.5772/intechopen.73203.

  • Ghaffari R, Salimi-Kenari H, Fahimipour F, Rabiee SM, Adeli H, Dashtimoghadam E. Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Int J Biol Macromol. 2020;148:434–48. https://doi.org/10.1016/j.ijbiomac.2020.01.112.

    Article  CAS  PubMed  Google Scholar 

  • Gharibi R, Kazemi S, Yeganeh H, Tafakori V. Utilizing dextran to improve hemocompatibility of antimicrobial wound dressings with embedded quaternary ammonium salts. Int J Biol Macromol. 2019;131:1044–56. https://doi.org/10.1016/j.ijbiomac.2019.03.185.

    Article  CAS  PubMed  Google Scholar 

  • Ghoneim MAM, Hassan AI, Mahmoud MG, Asker MS. Effect of polysaccharide from Bacillus subtilis sp. on cardiovascular diseases and atherogenic indices in diabetic rats. BMC Complement Altern Med. 2016;16:112. https://doi.org/10.1186/s12906-016-1093-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes TD, Caridade SG, Sousa MP, Azevedo S, Kandur MY, Oner ET, Alves NM, Mano JF. Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater. 2018;69:183–95. https://doi.org/10.1016/j.actbio.2018.01.027.

    Article  CAS  PubMed  Google Scholar 

  • Gorgieva S. Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes. 2020;8:624. https://doi.org/10.3390/pr.8050624.

    Article  CAS  Google Scholar 

  • Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. https://doi.org/10.3389/fvets.2019.00192.

  • Hamdi AA, Elattal NA, Amin MA, Ali AE, Mansour NM, Awad GEA, Farrag ARH, Esawy MA. In vivo assessment of possible probiotic properties of Bacillus subtilis and prebiotic properties of levan. Biocatal Agric Biotechnol. 2017;13:190–197. https://doi.org/10.1016/j.bcab.2017.12.001.

  • Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol. 2016;40:35–40. https://doi.org/10.1016/j.copbio.2016.02.008.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Ángeles G, Nešporová K, Ambrožová G, Kubala L, Velebný V. An effective translation: the development of hyaluronan-based medical products from the physicochemical, and preclinical aspects. Front Bioeng and Biotechnol. 2018;6:62. https://doi.org/10.3389/fbioe.2018.00062.

  • Hwang JS, Lee HS, Lee K-H, Yoo H-W, Lee D-Y, Suh B-K, Ko CW, Chung WY, Jin D-K, Shin CH, Han H-S, Han S, Kim H-S. Once-weekly administration of sustained-release growth hormone in Korean prepubertal children with idiopathic short stature: a randomized, controlled Phase II study. Horm Res Paediat. 2018;90:54–63. https://doi.org/10.1159/000489262.

  • Jacek P, Szustak M, Kubiak K, Gendaszewska-Darmach E, Ludwicka K, Bielecki S. Scaffolds for chondrogenic cells cultivation prepared from bacterial cellulose with relaxed fibers structure induced genetically. Nanomaterials. 2018;8:1066. https://doi.org/10.3390/nano8121066.

    Article  CAS  PubMed Central  Google Scholar 

  • Jalil A, Asim MH, Le N-MN, Laffleur F, Matuszczak B, Tribus M, Benkop-Schnurch A. S-protected gellan gum: decisive approach towards mucoadhesive antimicrobial vaginal films. Int J Biol Macromol. 2019;130:148–157. https://doi.org/10.1016/j.ijbiomac.2019.02.092.

  • Junka A, Bartosewicz M, Dziadas M, Szymczyk P, Dydak K, Zywicka A, Owczarek A, Bil-Lula I, Czajkowska J, Fijalkowski K. Application of bacterial cellulose experimental dressings saturated with gentamycin for management of bone biofilm in vitro and ex-vivo. J Biomed Mat Res Part B. 2019;108:30–37. https://doi.org/10.1002/jbm.b.34362.

  • Ke X, Li M, Wang X, Liang J, Wang X, Wu S, Long M, Hu C. An injectable chitosan/dextran/β-glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydr Polym. 2020;229:115516. https://doi.org/10.1016/j.carbpol.2019.115516.

    Article  CAS  PubMed  Google Scholar 

  • Khamrai M, Banerjee SL, Paul S, Ghosh AK, Sarkar P, Kundu PP. A mussel mimetic, bioadhesive, antimicrobial patch based on dopamine-modified bacterial cellulose/rGO/AgNPs: a green approach toward wound healing applications. ACS Sustain Chem Eng. 2019;7:12083–97. https://doi.org/10.1021/acssuschemeng.9b01163.

    Article  CAS  Google Scholar 

  • Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. Intelligent Scaffolds for Modulating and Promoting Tissue Regeneration. J Tissue Eng. 2017;8:2041731417726464. https://doi.org/10.1177/2041731417726464.

  • Kiani M, Tekie FSM, Dinarvand M, Soleimani M, Dinarvand R, Atyabi F. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study. Mater Sci Eng C Mater Biol Appl. 2016;62:771–8. https://doi.org/10.1016/j.msec.2016.02.009.

  • Koivisto JT, Gering C, Karvinen J, Cherian RM, Belay B, Hyttinen J, Aalto-Setala K, Kelomaki M, Parraga J. Mechanically biomimetic gelatin-gellan gum hydrogels for 3D culture of beating human cardiomyocytes. ACS Appl Mater Interfaces. 2019;11:20589–602. https://doi.org/10.1021/acsami.8b22343.

  • Kop TJ, Jakovljevic DM, Zivkovic LS, Zekic A, Beskoski VP, Milic DR, Gojgic-Cvijovic GD, Bjelakovic MS. Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity. Eur Polym J. 2020;123:109461. https://doi.org/10.1016/j.eurpolymj.2019.109461.

  • Liu C, Kolida S, Charalampopoulos RA, Rastall RA. An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. J Funct Foods. 2020;64:103668. https://doi.org/10.1016/j.jff.2019.103668.

    Article  CAS  Google Scholar 

  • Lopez KM, Ravula S, Pérez LR, Ayala CE, Losso JN, Janes ME, Warner IM. Hyaluronic acid−cellulose composites as patches for minimizing bacterial infections. ACS Omega. 2020;5:4125–32. https://doi.org/10.1021/acsomega.9b03852.

  • Ludwicka K, Jedrzejczak-Krzepkowska M, Kubiak K, Kolodziejczyk M, Pankiewicz T, Bielecki S (2016) Chapter 9-Medical and cosmetic applications of bacterial nanocellulose. In: Gama M, Dourado F, Bielecki S (eds) Bacterial Nanocellulose-From Biotechnology to Bio-Economy, Elsevier, pp. 145–165. https://doi.org/10.1016/B978-0444-63458-0.00009-3.

  • Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM. Liposomes coated with chitosan-xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci. 2012;101:566–75. https://doi.org/10.1002/jps.22775.

  • Manda MG, daSilva LP, Cerqueira MT, Pereira DR, Oliveira MB, Mano JF, Marques AP, Oliveira JM, Correlo VM, Reis RL. Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. J Biomed Mater Res A. 2018;106:479–90. https://doi.org/10.1002/jbm.a.36248.

  • Montagner IM, Merlo A, Carpanese D, Zuccolotto G, Renier D, Campisi C, Pasut G, Zanovello P, Rosato A. Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. Oncoscience. 2015;2(4):373–81. https://doi.org/10.18632/oncoscience.150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moscovici M, Hlevca C, Casarica A, Pavaloiu R-D. Nanocellulose and nanogels as modern drug delivery sustems. In: Jawaid M, Mohammad F, editors. Nanocellulose and Nanohydrogel Matrices – Biotechnological and Biomedical Applications. Wiley-VCH; 2017. p. 209–69.

    Chapter  Google Scholar 

  • Osmalek T, Freelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm. 2014;466(1-2):328–40. https://doi.org/10.1016/j.ijpharm.2014.03.038.

  • Osman A, Oner ET, Eroglu MS. Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydr Polym. 2017;165:61–70. https://doi.org/10.1016/j.carbpol.2017.01.097.

    Article  CAS  PubMed  Google Scholar 

  • Pacelli S, Paolicelli P, Moretti G, Petralito S, Di Giacomo S, Vitalone A, Casadei MA. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur. Polym. J. 2016; 77:114–123. https://doi.org/10.1016/j.eurpolymj.2016.02.007.

  • Pal S, Nisi R, Stoppa M, Licciulli A. Silver functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega. 2017;2:3632–9. https://doi.org/10.1021/acsomega.7b00442.

  • Palumbo FS, Federico S, Pitaressi G, Fiorica C, Giamonna G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym. 2020;229:115430. https://doi.org/10.1016/j.carbpol.2019.115430.

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Seo JY, Park JY, Ji YB, Kim K, Choi HS, Choi S, Kim JH, Min BH, Kim MS. An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater. 2019;11(30):1–16. https://doi.org/10.1038/s41427-019-0130-1.

  • Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Soni SK, Kulkarni RV. Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications. J Microbiol Methods. 2019;159:200–10. https://doi.org/10.1016/j.mimet.2019.03.009.

  • Qu J, Liang Y, Shi M, Guo B, Gao Y, Yin Z. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int J Biol Macromol. 2019;140:255–64. https://doi.org/10.1016/j.ijbiomac.2019.08.120.

  • Queiroz EAIF, Fortes ZB, da Cunha MAA, Sarilmiser HK, Dekker AMB, Oner ET, Dekker RFH, Khaper N. Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. Int J Biol Macromol. 2017;102:565–70. https://doi.org/10.1016/j.ijbiomac.2017.04.035.

  • Rao KM, Kumar A, Han SS. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J Mater Sci Technol. 2018;34:1371–7. https://doi.org/10.1016/j.jmst.2017.10.003.

  • Riahi N, Liberelle B, Henry O, De Crescenzo G. Impact of RGD amount in dextran-based hydrogels for cell delivery. Carbohydr Polym. 2017;161:219–27. https://doi.org/10.1016/j.carbpol.2017.01.002.

  • Rodell CB, Mc Arthur Jr JW, Dorsey SM, Wade RJ, Wang LL, Woo YJ, Burdick JA. Shear thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25:636–44. https://doi.org/10.1002/adfm.201403550.

  • Roman M, Haring AP, Bertucio TJ. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Cur Op Chem Eng. 2019;24:98–106. https://doi.org/10.1016/j.coche.2019.03.006.

    Article  Google Scholar 

  • Sagitha P, Reshmi CR, Sundaran SP, Binoy A, Mishra N, Sujith A. In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. Int J Biol Macromol. 2019;126:717–30. https://doi.org/10.1016/j.ijbiomac.2018.12.155.

  • Salman JAS, Salman MAS, Shather MF, Salim MZ. [54] Preparation of biopolymer (dextran) and gentamycin blend against multi-drug resistant bacterial infections associated with catheters. Abstracts/Arab J Urol. 2018;16:S26-S27. https://doi.org/10.1016/j.aju.2018.10.007.

  • Santhanam S, Shui Y-B, Struckhoff J, Karakoçak BB, Hamilton PD, Harocopos GJ, Ravi N. Bioinspired fibrillary hydrogel with controlled swelling behavior: applicability as an artificial vitreous. ACS Appl Bio Mater. 2019;2:70–80. https://doi.org/10.1021/acsabm.8b00376.

    Article  CAS  Google Scholar 

  • Sarilmiser HK, Oner ET. Investigation of anticancer activity of linear and aldehyde activated levan from Halomonas smyrnensis AAD6T. Biochem Eng J. 2014;92:28–34. https://doi.org/10.1016/jbej.2014.06.020.

  • Shera SS, Sahu S, Banik RM. Preparation of drug eluting natural composite scaffold using response surface methodology and artificial neural network approach. Tissue Eng Regen Med. 2018;15(2):131–143. https://doi.org/10.1007/s13770-017-0100-z.

  • Shirzad M, Hamedi J, Motevaseli E, Modarressi MH. Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artif Cells Nanomed Biotechnol. 2018;46:1051–61. https://doi.org/10.1080/21691401.2018.1443274.

  • Singh S, Gupta A, Sharma D, Gupta B. Dextran based herbal nanobiocomposite membranes for scar free wound healing. Int J Biol Macromol. 2018;113:227–39. https://doi.org/10.1016/j.ijbiomac.2018.02.097.

    Article  CAS  PubMed  Google Scholar 

  • Son S, Rao NV, Ko H, Shin S, Jeon J, Han HS, Nguyen VQ, Thambi T, Suh YD, Park JH. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. Int J Biol Macromol. 2018;110:399–405. https://doi.org/10.1016/j.ijbiomac.2017.11.048.

    Article  CAS  PubMed  Google Scholar 

  • Srikanth R, Siddartha G, CHSSS Reddy, Harish BS, Ramaiah MJ, Uppuluri KB. Antioxidant and anti-inflammatory levan from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydr Polym. 2015;123:8–16. https://doi.org/10.1016/jcarbpol.2014.12.079.

  • Tabernero A, Gonzales-Garcinuno A, Sanchez-Alvarez JM, Galan MA, del Valle EMM. development of a nanoparticle system based on a fructose polymer: Stability and drug release studies. Carbohydr Polym. 2017;160:26–33. https://doi.org/10.1016/j.carbpol.2016.12.025.

  • Taylan O, Yilmaz MT, Dertli E. Partial characterization of a levan type exopolysaccharide (BPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. Int J Biol Macromol. 2019;136:436–44. https://doi.org/10.1016/jijbiomac.2019.06.078.

    Article  CAS  PubMed  Google Scholar 

  • Tekie F, Soleimani M, Zakerian A, Dinarvand M, Amini M, Dinarvand R, Arefian E, Atyabi F. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr Polym. 2018;201:131–40. https://doi.org/10.1016/j.carbpol.2018.08.060.

  • Vilela CA, Correia C, da Silva Morais M, Santos TC, Gertrudes AC, Moreira ES, Frias AM, Learmonth DA, Oliveira P, Oliveira JM, Sousa RA, Espregueira-Mendes JD, Reis RL. In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair. J Biomed Mater Res Part A. 2018;106:1987–96. https://doi.org/10.1002/jbm.a.36406.

  • Wang C, Xiong S, You J, Guan W, Xu G, Dou H. Dextran-based coacervate nanodroplets as potential gene carriers for efficient cancer therapy. Carbohydr Polym. 2020;231:115687. https://doi.org/10.1016/j.carbpol.2019.115687.

    Article  CAS  Google Scholar 

  • Yadav V, Sun L, Panilaitis B, Kaplan DL. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J Tissue Eng Reger Med. 2015;9:E276–88. https://doi.org/10.1002/term.1644.

  • Ye G, Li G, Wang C, Ling B, Yang R, Huang S. Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr Polym. 2019;207:218–23. https://doi.org/10.1016/j.carbpol.2018.11.092.

    Article  CAS  PubMed  Google Scholar 

  • Zarour K, Llamas MG, Prieto A, Ruas-Madiedo P, Duenas MT, de Palencia PF, Aznar R, Kihal M, Lopez P. Rheology and bioactivity of high molecular weight dextrans synthesized by lactic acid bacteria. Carbohydr Polym. 2017;174:646-657. https://doi.org/10.1016/j.carbpol.2017.06.113

  • Zhang L-K, Du S, Wang X, Jiao Y, Yin L, Zhang Y, Guan Y-Q. Bacterial cellulose based composites enhanced transdermal drug targeting for breast cancer treatment. Chem Eng J. 2019;370:749–59. https://doi.org/10.1016/j.cej.2019.03.216.

    Article  CAS  Google Scholar 

  • Zhang J-F, Wang Y, Lam ML, McKinnnie RJ, Claycomb WC, Xu X. Cross-linked poly(lactic acid)/dextran nanofibrous scaffolds with tunable hydrophilicity promoting differentiation of embryoid bodies. Mater Today Commun. 2017;13:306–16. https://doi.org/10.1016/j.mtcomm.2017.10.012.

  • Zhao X, Li P, Guo B, Ma PX. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–48. https://doi.org/10.1016/j.actbio.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Liang Y, Zhang D, Sun X, Liang L, Li J, Liu Y-N. Gelatin-based hydrogels blended with gellan as an injectable wound dressing. ACS Omega. 2018;3:4766–75. https://doi.org/10.1021/acsomega.8b00308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou P, Liu H, Li Y, Huang J, Dai Y. Surface dextran modified electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous scaffold promotes the proliferation of bone marrow-derived mesenchymal stem cells. Mater Lett. 2016;179:109–13. https://doi.org/10.1016/j.matlet.2016.04.189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moscovici, M., Balas, C. (2021). Bacterial Polysaccharides Versatile Medical Uses. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics