Skip to main content

Theory of Spectroscopy and Light Emission of Semiconductors Nanostructures

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 194))

  • 1770 Accesses

Abstract

Due to their tunable optoelectronic properties, quantum confined electronic excitations in semiconductor quantum dots offer a versatile platform to design nanophotonic device applications. To address and control individual electronic excitations such as excitons, the fundamental Coulomb interaction between the electronic states as well as their coupling to other quasiparticles such as phonons and photons is of interest. In this chapter, we develop a theory of quantum dot spectroscopy and study coupled quantum dot-cavity structures with respect to their correlated photon emission statistics. To account for the surrounding material of the quantum emitter, we include electron-phonon interaction as well as analyze transitions between localized bound quantum dot states and delocalized states of the host medium. Coherent couplings between different quantum dots and the underlying microscopic coupling mechanisms are investigated using two-dimensional spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bimberg, M. Grundmann, N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999)

    Google Scholar 

  2. B. Lingnau, K. Lüdge, B. Herzog, M. Kolarczik, Y. Kaptan, U. Woggon, N. Owschimikow, Phys. Rev. B 94, 014305 (2016). https://doi.org/10.1103/PhysRevB.94.014305

  3. J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 71, 125327 (2005). https://doi.org/10.1103/PhysRevB.71.125327

  4. I.A. Ostapenko, G. Hönig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M.R. Dachner, M. Richter, A. Knorr, S. Kako, Y. Arakawa, Phys. Rev. B 85, 081303 (2012). https://doi.org/10.1103/PhysRevB.85.081303

  5. H. Haug, S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edn. (2009). https://doi.org/10.1088/1742-6596/248/1/012018

    Google Scholar 

  6. G. Kießlich, A. Wacker, E. Schöll, S.A. Vitusevich, A.E. Belyaev, S.V. Danylyuk, A. Förster, N. Klein, M. Henini, Phys. Rev. B 68, 125331 (2003). https://doi.org/10.1103/PhysRevB.68.125331

  7. S. Franke, S. Hughes, M.K. Dezfouli, P.T. Kristensen, K. Busch, A. Knorr, M. Richter, Phys. Rev. Lett. 122, 213901 (2019). https://doi.org/10.1103/PhysRevLett.122.213901

  8. P. Tighineanu, C.L. Dreeßen, C. Flindt, P. Lodahl, A.S. Sørensen, Phys. Rev. Lett. 120, 257401 (2018). https://doi.org/10.1103/PhysRevLett.120.257401

  9. S. Bounouar, M. Müller, A.M. Barth, M. Glässl, V.M. Axt, P. Michler, Phys. Rev. B 91, 161302 (2015). https://doi.org/10.1103/PhysRevB.91.161302

  10. G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990)

    Book  Google Scholar 

  11. G. Czycholl, Theoretische Festkörperphysik (Springer, 2008)

    Google Scholar 

  12. K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012). https://doi.org/10.1103/PhysRevB.85.115317

    Article  ADS  Google Scholar 

  13. K. Kaasbjerg, K.S. Thygesen, A.P. Jauho, Phys. Rev. B 87, 235312 (2013)

    Article  ADS  Google Scholar 

  14. B. Krummheuer, V.M. Axt, T. Kuhn, Phys. Rev. B 65, 195313 (2002). https://doi.org/10.1103/PhysRevB.65.195313

  15. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Physica Status Solidi (b), 238(3), 419. https://doi.org/10.1002/pssb.200303155

    Article  ADS  Google Scholar 

  16. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)

    Google Scholar 

  17. A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 76, 205324 (2007). https://doi.org/10.1103/PhysRevB.76.205324

  18. D. Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, J.C. Maan, Phys. Rev. Lett. 94, 026808 (2005). https://doi.org/10.1103/PhysRevLett.94.026808

  19. V.A. Fonoberov, E.P. Pokatilov, A.A. Balandin, Phys. Rev. B 66, 085310 (2002). https://doi.org/10.1103/PhysRevB.66.085310

  20. D. Nikonov, A. Imamoğlu, L. Butov, H. Schmidt, Phys. Rev. Lett. 79, 4633 (1997). https://doi.org/10.1103/PhysRevLett.79.4633

    Article  ADS  Google Scholar 

  21. T.R. Nielsen, P. Gartner, M. Lorke, J. Seebeck, F. Jahnke, Phys. Rev. B 72, 235311 (2005). https://doi.org/10.1103/PhysRevB.72.235311

  22. A. Zimmermann, S. Kuhn, M. Richter, Phys. Rev. B 93, 035308 (2016). https://doi.org/10.1103/PhysRevB.93.035308

  23. A. Carmele, A. Knorr, M. Richter, Phys. Rev. B 79, 035316 (2009). https://doi.org/10.1103/PhysRevB.79.035316

  24. M. Fox, in Quantum Optics: An Introduction. Oxford Master Series in Physics (OUP Oxford, 2006)

    Google Scholar 

  25. H. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002)

    Google Scholar 

  26. M. Berman, R. Kosloff, H. Tal-Ezer, J. Phys. A Math. General 25(5), 1283 (1992). http://stacks.iop.org/0305-4470/25/i=5/a=031

  27. C. Gies, F. Jahnke, W.W. Chow, Phys. Rev. A 91, 061804 (2015). https://doi.org/10.1103/PhysRevA.91.061804

  28. J. Clauser, A. Shimony, Rep. Progress Phys. 41(12), 1881 (1978)

    Article  ADS  Google Scholar 

  29. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47(7), 460 (1981)

    Article  ADS  Google Scholar 

  30. A. Carmele, A. Knorr, Phys. Rev. B 84(7), 075328 (2011)

    Article  ADS  Google Scholar 

  31. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000). https://doi.org/10.1103/PhysRevLett.84.2513

    Article  ADS  Google Scholar 

  32. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84(11), 2513 (2000)

    Article  ADS  Google Scholar 

  33. C. Salter, R. Stevenson, I. Farrer, C. Nicoll, D. Ritchie, A. Shields, Nature 465(7298), 594 (2010)

    Article  ADS  Google Scholar 

  34. M.R. Dachner, E. Malic, M. Richter, A. Carmele, J. Kabuss, A. Wilms, J.E. Kim, G. Hartmann, J. Wolters, U. Bandelow, et al., Physica Status Solidi (b) 247(4), 809 (2010)

    Article  ADS  Google Scholar 

  35. A. Carmele, F. Milde, M.R. Dachner, M.B. Harouni, R. Roknizadeh, M. Richter, A. Knorr, Phys. Rev. B 81(19), 195319 (2010)

    Article  ADS  Google Scholar 

  36. S.M. Hein, F. Schulze, A. Carmele, A. Knorr, Phys. Rev. Lett. 113(2), 027401 (2014)

    Article  ADS  Google Scholar 

  37. N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, P. Petroff, Phys. Rev. Lett. 96(13), 130501 (2006)

    Article  ADS  Google Scholar 

  38. G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M. Wagner, E. Stock, J. Reparaz, A. Schliwa, S. Reitzenstein et al., Phys. Rev. B 87(24), 245314 (2013)

    Article  ADS  Google Scholar 

  39. T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.H. Schulze, A. Strittmatter, J. Beyer et al., Nat. Commun. 8, 14870 (2017)

    Article  ADS  Google Scholar 

  40. R. Winik, D. Cogan, Y. Don, I. Schwartz, L. Gantz, E.R. Schmidgall, N. Livneh, R. Rapaport, E. Buks, D. Gershoni, Phys. Rev. B 95, 235435 (2017). https://doi.org/10.1103/PhysRevB.95.235435

  41. S. Bounouar, C. de la Haye, M. Strauß, P. Schnauber, A. Thoma, M. Gschrey, J.H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, Appl. Phys. Lett. 112, 153107 (2018). https://doi.org/10.1063/1.5020242

    Article  ADS  Google Scholar 

  42. J. Zhang, J.S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, O.G. Schmidt, Nat. Commun. 6, 10067 (2015)

    Article  ADS  Google Scholar 

  43. Y. Lu, N.L. Naumann, J. Cerrillo, Q. Zhao, A. Knorr, A. Carmele, Phys. Rev. A 95(6), 063840 (2017)

    Article  ADS  Google Scholar 

  44. R.J. Young, R.M. Stevenson, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, New J. Phys. 8(2), 29 (2006)

    Article  ADS  Google Scholar 

  45. J.E. Avron, G. Bisker, D. Gershoni, N.H. Lindner, E.A. Meirom, R.J. Warburton, Phys. Rev. Lett. 100(12), 120501 (2008)

    Article  ADS  Google Scholar 

  46. S. Bounouar, M. Strauß, A. Carmele, P. Schnauber, A. Thoma, M. Gschrey, J. Schulze, A. Strittmatter, S. Rodt, A. Knorr, S. Reitzenstein, Phys. Rev. Lett. 118(23), 233601 (2017)

    Article  ADS  Google Scholar 

  47. C. Schrama, G. Nienhuis, H. Dijkerman, C. Steijsiger, H. Heideman, Phys. Rev. A 45(11), 8045 (1992)

    Article  ADS  Google Scholar 

  48. F. Hargart, M. Müller, K. Roy-Choudhury, S. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, P. Michler, Phys. Rev. B 93(11), 115308 (2016)

    Article  ADS  Google Scholar 

  49. P. Ardelt, M. Koller, T. Simmet, L. Hanschke, A. Bechtold, A. Regler, J. Wierzbowski, H. Riedl, J. Finley, K. Müller, Phys. Rev. B 93(16), 165305 (2016)

    Article  ADS  Google Scholar 

  50. S.C. Kuhn, A. Knorr, S. Reitzenstein, M. Richter, Opt. Express 24(22), 25446 (2016). https://doi.org/10.1364/OE.24.025446, http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25446

    Article  ADS  Google Scholar 

  51. M. Richter, A. Carmele, A. Sitek, A. Knorr, Phys. Rev. Lett. 103, 087407 (2009). https://doi.org/10.1103/PhysRevLett.103.087407

  52. M. Gegg, M. Richter, New J. Phys. 18(4), 043037 (2016). http://stacks.iop.org/1367-2630/18/i=4/a=043037

    Article  ADS  Google Scholar 

  53. M. Gegg, M. Richter, Sci. Rep. 7(1), 16304 (2017). https://doi.org/10.1038/s41598-017-16178-8

    Article  ADS  Google Scholar 

  54. M. Richter, M. Gegg, T.S. Theuerholz, A. Knorr, Phys. Rev. B 91, 035306 (2015). https://doi.org/10.1103/PhysRevB.91.035306

  55. B. Chase, J. Geremia, Phys. Rev. A 78, 052101 (2008)

    Article  ADS  Google Scholar 

  56. B. Baragiola, B. Chase, J. Geremia, Phys. Rev. A 81, 032104 (2010)

    Article  ADS  Google Scholar 

  57. S. Hartmann, Quantum Inf. Comput. 16, 1333 (2016)

    MathSciNet  Google Scholar 

  58. M. Xu, D. Tieri, M. Holland, Phys. Rev. A 87, 062101 (2013)

    Article  ADS  Google Scholar 

  59. L. Novo, T. Moroder, O. Gühne, Phys. Rev. A 88, 012305 (2013)

    Article  ADS  Google Scholar 

  60. F. Damanet, D. Braun, J. Martin, Phys. Rev. A 94, 033838 (2016)

    Article  ADS  Google Scholar 

  61. Z.X. Gong, M. Xu, M. Foss-Feig, J. Thompson, A. Rey, M. Holland, A. Gorshkov, arXiv:1611.00797 (2016)

  62. P. Kirton, J. Keeling, Phys. Rev. Lett. 118, 123602 (2017)

    Article  ADS  Google Scholar 

  63. M. Gegg, A. Carmele, A. Knorr, M. Richter, New J. Phys. 20(1), 013006 (2018). http://stacks.iop.org/1367-2630/20/i=1/a=013006

    Article  ADS  MathSciNet  Google Scholar 

  64. N. Shammah, N. Lambert, F. Nori, S. De Liberato, Phys. Rev. A 96, 023863 (2017)

    Article  ADS  Google Scholar 

  65. P. Kirton, J. Keeling, New J. Phys. 20(1), 015009 (2018). http://stacks.iop.org/1367-2630/20/i=1/a=015009

    Article  MathSciNet  Google Scholar 

  66. N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, F. Nori, arXiv:1805.05129 (2018)

  67. T. Warnakula, M.I. Stockman, M. Premaratne, JOSA B 35(6), 1397 (2018)

    Article  ADS  Google Scholar 

  68. S. Sarkar, J. Satchell, J. Phys. A: Math. Gen. 20, 2147 (1987)

    Article  ADS  Google Scholar 

  69. S. Sarkar, J. Satchell, Europhys. Lett. 3, 797 (1987)

    Article  ADS  Google Scholar 

  70. H. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker-Planck Equations (Springer, 2002)

    Google Scholar 

  71. S.C. Kuhn, A. Knorr, M. Richter, N. Owschimikow, M. Kolarczik, Y.I. Kaptan, U. Woggon, Phys. Rev. B 89, 201414 (2014). https://doi.org/10.1103/PhysRevB.89.201414

  72. F. Quochi, M. Dinu, L.N. Pfeiffer, K.W. West, C. Kerbage, R.S. Windeler, B.J. Eggleton, Phys. Rev. B 67, 235323 (2003). https://doi.org/10.1103/PhysRevB.67.235323

  73. G. Dasbach, T. Baars, M. Bayer, A. Larionov, A. Forchel, Phys. Rev. B 62, 13076 (2000). https://doi.org/10.1103/PhysRevB.62.13076

    Article  ADS  Google Scholar 

  74. S. Dommers, V.V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, D. Bimberg, Appl. Phys. Lett. 90, 033508 (2007)

    Article  ADS  Google Scholar 

  75. J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Schöll, A. Knorr, Phys. Rev. Lett. 101, 256803 (2008). https://doi.org/10.1103/PhysRevLett.101.256803

  76. S.C. Kuhn, Theory of optical and dissipative processes in quantum dots. Ph.D. thesis, Technische Universität Berlin (2016)

    Google Scholar 

  77. S.C. Kuhn, M. Richter, Phys. Rev. B 90, 125308 (2014). https://doi.org/10.1103/PhysRevB.90.125308

  78. S.C. Kuhn, M. Richter, Proc.SPIE 9746, 9746 (2016). https://doi.org/10.1117/12.2207635

  79. S.C. Kuhn, M. Richter, Phys. Rev. B 91, 155309 (2015). https://doi.org/10.1103/PhysRevB.91.155309

  80. V. Delmonte, J.F. Specht, T. Jakubczyk, S. Höfling, M. Kamp, C. Schneider, W. Langbein, G. Nogues, M. Richter, J. Kasprzak, Phys. Rev. B 96, 041124 (2017). https://doi.org/10.1103/PhysRevB.96.041124

  81. J.F. Specht, M. Richter, Appl. Phys. B 122(4), 97 (2016). https://doi.org/10.1007/s00340-016-6368-1

  82. D. Abramavicius, B. Palmieri, D.V. Voronine, F.Šanda, S. Mukamel, Chemical Reviews 109(6), 2350 (2009). https://doi.org/10.1021/cr800268n

    Article  Google Scholar 

  83. V. Chernyak, W.M. Zhang, S. Mukamel, J. Chem. Phys. 109(21), 9587 (1998). http://scitation.aip.org/content/aip/journal/jcp/109/21/10.1063/1.477621

  84. T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship, G.R. Fleming, Nature 434(7033), 625 (2005)

    Article  ADS  Google Scholar 

  85. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  86. T. Zhang, I. Kuznetsova, T. Meier, X. Li, R.P. Mirin, P. Thomas, S.T. Cundiff, PNAS 104(36), 14227 (2007)

    Article  ADS  Google Scholar 

  87. A. Nemeth, F. Milota, T. Mancal, T. Pullerits, J. Sperling, J. Hauer, H.F. Kauffmann, N. Christensson, J. Chem. Phys. 133(9) (2010). https://doi.org/10.1063/1.3474995

    Article  ADS  Google Scholar 

  88. J. Tollerud, J.A. Davis, JOSA B 33(7), C108 (2016). http://josab.osa.org/abstract.cfm?URI=josab-33-7-C108

  89. R.D. Mehlenbacher, T.J. McDonough, M. Grechko, M.Y. Wu, M.S. Arnold, M.T. Zanni, Nature Comm. 6 (2015)

    Google Scholar 

  90. E. Cassette, J.C. Dean, G.D. Scholes, Small 12(16), 2234 (2016)

    Article  Google Scholar 

  91. G. Moody, M.E. Siemens, A.D. Bristow, X. Dai, A.S. Bracker, D. Gammon, S.T. Cundiff, Phys. Rev. B 83, 245316 (2011). https://doi.org/10.1103/PhysRevB.83.245316

  92. J. Kasprzak, B. Patton, V. Savona, W. Langbein, Nat. Photonics 5(1), 57 (2010). https://doi.org/10.1038/nphoton.2010.28410.1038/nphoton.2010.284, https://www.nature.com/articles/nphoton.2010.284#supplementary-information

  93. E. Harel, S.M. Rupich, R.D. Schaller, D.V. Talapin, G.S. Engel, Phys. Rev. B 86, 075412 (2012). https://doi.org/10.1103/PhysRevB.86.075412

  94. G. Moody, R. Singh, H. Li, I.A. Akimov, M. Bayer, D. Reuter, A.D. Wieck, A.S. Bracker, D. Gammon, S.T. Cundiff, Phys. Rev. B 87, 041304 (2013). https://doi.org/10.1103/PhysRevB.87.041304

  95. G. Moody, S.T. Cundiff, Adv. Phys. X 2(3), 641 (2017). https://doi.org/10.1080/23746149.2017.1346482. PMID: 28894306

    Google Scholar 

  96. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, D.V. Voronine, Science 1209206 (2011)

    Google Scholar 

  97. M. Richter, F. Schlosser, M. Schoth, S. Burger, F. Schmidt, A. Knorr, S. Mukamel, Phys. Rev. B 86, 085308 (2012). https://doi.org/10.1103/PhysRevB.86.085308

  98. F. Schlosser, A. Knorr, S. Mukamel, M. Richter, New J. Phys. 15(2), 025004 (2013). http://stacks.iop.org/1367-2630/15/i=2/a=025004

    Article  ADS  Google Scholar 

  99. M. Krecik, S.M. Hein, M. Schoth, M. Richter, Phys. Rev. A 92, 052113 (2015). https://doi.org/10.1103/PhysRevA.92.052113

  100. E.W. Martin, S.T. Cundiff, Phys. Rev. B 97, 081301 (2018). https://doi.org/10.1103/PhysRevB.97.081301

  101. S. Goetz, D. Li, V. Kolb, J. Pflaum, T. Brixner, Opt. Express 26(4), 3915 (2018). https://doi.org/10.1364/OE.26.003915, http://www.opticsexpress.org/abstract.cfm?URI=oe-26-4-3915

    Article  ADS  Google Scholar 

  102. P. Tian, D. Keusters, Y. Suzaki, W.S. Warren, Science 300(5625), 1553 (2003). https://doi.org/10.1126/science.1083433, http://science.sciencemag.org/content/300/5625/1553

    Article  ADS  Google Scholar 

  103. J.F. Specht, A. Knorr, M. Richter, Phys. Rev. B 91, 155313 (2015). https://doi.org/10.1103/PhysRevB.91.155313

  104. M. Richter, K.J. Ahn, A. Knorr, A. Schliwa, D. Bimberg, M.E.A. Madjet, T. Renger, Physica Status Solidi (b) 243(10), 2302. https://doi.org/10.1002/pssb.200668053

    Article  ADS  Google Scholar 

  105. G.D. Scholes, D.L. Andrews, Phys. Rev. B 72, 125331 (2005). https://doi.org/10.1103/PhysRevB.72.125331

  106. R. Singh, M. Richter, G. Moody, M.E. Siemens, H. Li, S.T. Cundiff, Phys. Rev. B 95, 235307 (2017). https://doi.org/10.1103/PhysRevB.95.235307

  107. M. Richter, R. Singh, M. Siemens, S.T. Cundiff, Sci. Adv. 4, 6 (2018). https://doi.org/10.1126/sciadv.aar7697, http://advances.sciencemag.org/content/4/6/eaar7697

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 787 Projekt B1 (43659573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhn, S.C., Carmele, A., Knorr, A., Richter, M. (2020). Theory of Spectroscopy and Light Emission of Semiconductors Nanostructures. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_6

Download citation

Publish with us

Policies and ethics