Skip to main content

Obesity and Osteoarthritis: Are Adipokines Bridging Metabolism, Inflammation, and Biomechanics?

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Abstract

Osteoarthritis (OA) is a highly prevalent debilitating and painful pathology derived from progressive degeneration of articular joints. Obesity has long been recognized as a significant and potentially preventable risk factor for OA incidence, progression, and disability. Biomechanical loading, together with metabolic and inflammatory imbalances of the joint, strongly contributes to obesity-induced OA pathophysiology. Adipose-tissue derived cytokines—adipokines—have demonstrated roles in modulating pro/anti-inflammatory and anabolic/catabolic joint balance, with implications in cartilage and bone homeostasis. Mechanical stress may lead to considerable increases in proinflammatory mediators within the joint. Therefore, adipokines emerged as potential candidates to link mechanical, metabolic and inflammatory components of obesity-induced osteoarthritis. Herein we summarize the biology of adipokines in joint tissues, highlighting their implications in the dysregulation of joint homeostasis and, thus OA pathogenesis. Many of the aspects of the adipokine network remain largely unknown and further insights into the intimate mechanisms of adipokines activity will be of great relevance to develop disease-modifying osteoarthritis drugs, especially for obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Y, Liu J, Yao J et al (2014) Obesity: pathophysiology and intervention. Nutrients 6(11):5153–5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64(6):1697–1707

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25(6):815–823

    Article  PubMed  PubMed Central  Google Scholar 

  4. Glyn-Jones S, Palmer AJR, Agricola R et al (2015) Osteoarthritis. Lancet 386(9991):376–387

    Article  CAS  PubMed  Google Scholar 

  5. Guilak F, Fermor B, Keefe FJ et al (2004) The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res 423:17–26

    Article  Google Scholar 

  6. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 18(1):24–33

    Article  CAS  Google Scholar 

  7. Gabay O, Hall DJ, Berenbaum F, Henrotin Y, Sanchez C (2008) Osteoarthritis and obesity: experimental models. Jt Bone Spine 75(6):675–679

    Article  Google Scholar 

  8. Aspden RM (2011) Obesity punches above its weight in osteoarthritis. Nat Rev Rheumatol 7(1):65–68

    Article  PubMed  Google Scholar 

  9. Vieira-Potter VJ (2014) Inflammation and macrophage modulation in adipose tissues. Cell Microbiol 16(10):1484–1492

    Article  CAS  PubMed  Google Scholar 

  10. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6(10):772–783

    Article  CAS  PubMed  Google Scholar 

  11. Francisco V, Pino J, Gonzalez-Gay MA et al (2018) Adipokines and inflammation: is it a question of weight? Br J Pharmacol 175(10):1569–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pickvance EA, Oegema TR, Thompson RC (1993) Immunolocalization of selected cytokines and proteases in canine articular cartilage after transarticular loading. J Orthop Res 11(3):313–323

    Article  CAS  PubMed  Google Scholar 

  13. Das P, Schurman DJ, Smith RL (1997) Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J Orthop Res 15(1):87–93

    Article  CAS  PubMed  Google Scholar 

  14. Lee DA, Frean SP, Lees P, Bader DL (1998) Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose. Biochem Biophys Res Commun 251(2):580–585

    Article  CAS  PubMed  Google Scholar 

  15. Mohtai M, Gupta MK, Donlon B et al (1996) Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytesin vitro. J Orthop Res 14(1):67–73

    Article  CAS  PubMed  Google Scholar 

  16. Smith RL, Donlon BS, Gupta MK et al (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolismin vitro. J Orthop Res 13(6):824–831

    Article  CAS  PubMed  Google Scholar 

  17. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F (2001) The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 19(4):729–737

    Article  CAS  PubMed  Google Scholar 

  18. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F (2002) Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthr Cartil 10:792–798

    Article  CAS  Google Scholar 

  19. Takao M, Okinaga T, Ariyoshi W et al (2011) Role of heme oxygenase-1 in inflammatory response induced by mechanical stretch in synovial cells. Inflamm Res 60(9):861–867

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez C, Pesesse L, Gabay O et al (2012) Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193–1203

    Article  CAS  PubMed  Google Scholar 

  21. Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C (1984) Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2:221–234

    Article  CAS  PubMed  Google Scholar 

  22. Felson DT, Zhang Y, Anthony JM, Naimark A, Anderson JJ (1992) Weight loss reduces the risk for symptomatic knee osteoarthritis in women. Ann Intern Med 116(7):535

    Article  CAS  PubMed  Google Scholar 

  23. Yusuf E, Nelissen RG, Ioan-Facsinay A et al (2010) Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 69(4):761–765

    Article  PubMed  Google Scholar 

  24. Griffin TM, Huebner JL, Kraus VB, Guilak F (2009) Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum 60(10):2935–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Green ED, Maffei M, Braden VV et al (1995) The human obese (OB) gene: RNA expression pattern and mapping on the physical, cytogenetic, and genetic maps of chromosome 7. Genome Res 5(1):5–12

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Rui L (2014) Leptin signaling and leptin resistance. Front Med 7(2):207–222

    Article  Google Scholar 

  27. Cohen B, Novick D, Rubinstein M (1996) Modulation of insulin activities by leptin. Science 274(5290):1185–1188

    Article  CAS  PubMed  Google Scholar 

  28. Münzberg H, Morrison CD (2015) Structure, production and signaling of leptin. Metabolism 64(1):13–23

    Article  PubMed  CAS  Google Scholar 

  29. Frühbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393(1):7–20

    Article  PubMed  CAS  Google Scholar 

  30. Francisco V, Pino J, Campos-Cabaleiro V et al (2018) Obesity, fat mass and immune system: role for leptin. Front Physiol 9:640

    Article  PubMed  PubMed Central  Google Scholar 

  31. Richter M, Trzeciak T, Rybka JD et al (2017) Correlations between serum adipocytokine concentrations, disease stage, radiological status and total body fat content in the patients with primary knee osteoarthritis. Int Orthop 41(5):983–989

    Article  PubMed  Google Scholar 

  32. Presle N, Pottie P, Dumond H et al (2006) Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartil 14(7):690–695

    Article  CAS  PubMed  Google Scholar 

  33. Conde J, Scotece M, López V et al (2013) Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann Rheum Dis 73(3):631–633

    Article  PubMed  CAS  Google Scholar 

  34. Vuolteenaho K, Koskinen A, Moilanen E (2014) Leptin—a link between obesity and osteoarthritis. Applications for prevention and treatment. Basic Clin Pharmacol Toxicol 114(1):103–108

    Article  CAS  Google Scholar 

  35. Dumond H, Presle N, Terlain B et al (2003) Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 48(11):3118–3129

    Article  CAS  PubMed  Google Scholar 

  36. Simopoulou T, Malizos KN, Iliopoulos D et al (2007) Differential expression of leptin and leptin’s receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthr Cartil 15(8):872–883

    Article  CAS  Google Scholar 

  37. Vuolteenaho K, Koskinen A, Moilanen T, Moilanen E (2012) Leptin levels are increased and its negative regulators, SOCS-3 and sOb-R are decreased in obese patients with osteoarthritis: a link between obesity and osteoarthritis. Ann Rheum Dis 71(11):1912–1913

    Article  CAS  PubMed  Google Scholar 

  38. Karvonen-Gutierrez CA, Harlow SD, Mancuso P, Jacobson J, De Leon CFM, Nan B (2013) Association of leptin levels with radiographic knee osteoarthritis among a cohort of midlife women. Arthritis Care Res 65(6):936–944

    Article  CAS  Google Scholar 

  39. Zhang P, Zhong ZH, Yu HT, Liu B (2015) Significance of increased leptin expression in osteoarthritis patients. PLoS ONE 10(4):e0123224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Massengale M, Lu B, Pan JJ, Katz JN, Solomon DH (2012) Adipokine hormones and hand osteoarthritis: radiographic severity and pain. PLoS ONE 7(10):e47860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Staikos C, Ververidis A, Drosos G, Manolopoulos VG, Verettas D-A, Tavridou A (2013) The association of adipokine levels in plasma and synovial fluid with the severity of knee osteoarthritis. Rheumatology 52(6):1077–1083

    Article  CAS  PubMed  Google Scholar 

  42. Scotece M, Mobasheri A (2015) Leptin in osteoarthritis: focus on articular cartilage and chondrocytes. Life Sci 140:75–78

    Article  CAS  PubMed  Google Scholar 

  43. Tu C, He J, Wu B, Wang W, Li Z (2019) An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 113:1–12

    Article  CAS  PubMed  Google Scholar 

  44. Pearson MJ, Herndler-Brandstetter D, Tariq MA et al (2017) IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 7(1):3451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Scotece M, Pérez T, Conde J et al (2017) Adipokines induce pro-inflammatory factors in activated CD4+ T cells from osteoarthritis patient. J Orthop Res 35(6):1299–1303

    Article  CAS  PubMed  Google Scholar 

  46. Conde J, Scotece M, López V et al (2012) Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes. PLoS ONE 7(12):e52533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otero M, Gomez Reino JJ, Gualillo O (2003) Synergistic induction of nitric oxide synthase type II: in vitro effect of leptin and interferon-gamma in human chondrocytes and ATDC5 chondrogenic cells. Arthritis Rheum 48(2):404–409

    Article  CAS  PubMed  Google Scholar 

  48. Otero M, Lago R, Lago F, Reino JJG, Gualillo O (2005) Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res Ther 7(3):R581–R591

    Article  PubMed  PubMed Central  Google Scholar 

  49. Otero M, Lago R, Gómez R, Lago F, Gomez-Reino JJ, Gualillo O (2007) Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes. Life Sci 81(19–20):1452–1460

    Article  CAS  PubMed  Google Scholar 

  50. Vuolteenaho K, Koskinen A, Kukkonen M et al (2009) Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage–mediator role of NO in leptin-induced PGE2, IL-6, and IL-8 production. Mediators Inflamm 2009:345838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Koskinen A, Vuolteenaho K, Nieminen R, Moilanen T, Moilanen E (2011) Leptin enhances MMP-1, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from oa patients. Clin Exp Rheumatol 29(1):57–64

    PubMed  Google Scholar 

  52. Bao JP, Chen WP, Feng J, Hu PF, Shi ZL, Wu LD (2010) Leptin plays a catabolic role on articular cartilage. Mol Biol Rep 37(7):3265–3272

    Article  CAS  PubMed  Google Scholar 

  53. Zhou B, Li H, Shi J (2017) miR-27 inhibits the NF-κB signaling pathway by targeting leptin in osteoarthritic chondrocytes. Int J Mol Med 40(2):523–530

    Article  CAS  PubMed  Google Scholar 

  54. Mutabaruka M-S, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D (2010) Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther 12(1):R20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhao CQ, Liu D, Li H, Jiang LS, Dai LY (2008) Expression of leptin and its functional receptor on disc cells: contribution to cell proliferation. Spine (Phila. Pa. 1976) 33(23):858–864

    Article  PubMed  Google Scholar 

  56. Zhao X, Dong Y, Zhang J et al (2016) Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells. Cell Death Dis 7(4):e2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Poonpet T (2014) Adipokines: biomarkers for osteoarthritis? World J Orthop 5(3):319

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu M, Liu F (2014) Regulation of adiponectin multimerization, signaling and function. Best Pract Res Clin Endocrinol Metab 28(1):25–31

    Article  PubMed  CAS  Google Scholar 

  59. Sun Y, Xun K, Wang C et al (2009) Adiponectin, an unlocking adipocytokine: review. Cardiovasc Ther 27(1):59–75

    Article  PubMed  CAS  Google Scholar 

  60. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26(3):439–451

    Article  CAS  PubMed  Google Scholar 

  61. Maeda N, Takahashi M, Funahashi T et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50(9):2094–2099

    Article  CAS  PubMed  Google Scholar 

  62. Luo Y, Liu M (2016) Adiponectin: a versatile player of innate immunity. J. Mol. Cell Biol. 8(2):120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laurberg TB, Frystyk J, Ellingsen T et al (2009) Plasma adiponectin in patients with active, early, and chronic rheumatoid arthritis who are steroid- and disease-modifying antirheumatic drug-naive compared with patients with osteoarthritis and controls. J Rheumatol 36(9):1885–1891

    Article  CAS  PubMed  Google Scholar 

  64. Fioravanti A, Cheleschi S, De Palma A et al (2017) Can adipokines serum levels be used as biomarkers of hand osteoarthritis? Biomarkers 1–6 [Epub ahead of print]

    Google Scholar 

  65. Kang EH, Lee YJ, Kim TK et al (2010) Adiponectin is a potential catabolic mediator in osteoarthritis cartilage. Arthritis Res Ther 12(6):R231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Q, Cai J, Wang J et al (2014) Down-regulation of adiponectin receptors in osteoarthritic chondrocytes. Cell Biochem Biophys 70(1):491–497

    Article  CAS  PubMed  Google Scholar 

  67. Francisco V, Pérez T, Pino J et al (2017) Biomechanics, obesity, and osteoarthritis. The role of adipokines: when the levee breaks. J Orthop Res 36(2):594–604

    Google Scholar 

  68. Zuo W, Wu Z-H, Wu N et al (2011) Adiponectin receptor 1 mediates the difference in adiponectin- induced prostaglandin E2 production in rheumatoid arthritis and osteoarthritis synovial fibroblasts. Chin Med J (Engl) 124(23):3919–3924

    CAS  Google Scholar 

  69. Luo X-H, Guo L-J, Yuan L-Q et al (2005) Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309(1):99–109

    Article  CAS  PubMed  Google Scholar 

  70. Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17(6):901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang L, Gao X, Yang X et al (2016) Ladder-Climbing training prevents bone loss and microarchitecture deterioration in diet-induced obese rats. Calcif Tissue Int 98(1):85–93

    Article  CAS  PubMed  Google Scholar 

  72. Toussirot É, Binda D, Gueugnon C, Dumoulin G (2012) Adiponectin in autoimmune diseases. Curr Med Chem 19(32):5474–5480

    Article  CAS  PubMed  Google Scholar 

  73. Abella V, Scotece M, Conde J et al (2015) The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 20(8):565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Villalvilla A, García-Martín A, Largo R, Gualillo O, Herrero-Beaumont G, Gómez R (2016) The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction. Sci Rep 6:29243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H (2017) Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 28(5):388–397

    Article  CAS  PubMed  Google Scholar 

  76. Fujino R-S, Tanaka K, Morimatsu M, Tamura K, Kogo H, Hara T (2006) Spermatogonial cell-mediated activation of an IkappaBzeta-independent nuclear factor-kappaB pathway in Sertoli cells induces transcription of the lipocalin-2 gene. Mol Endocrinol 20(4):904–915

    Article  CAS  PubMed  Google Scholar 

  77. Conde J, Otero M, Scotece M et al (2016) E74-like factor 3 and nuclear factor-κB regulate lipocalin-2 expression in chondrocytes. J Physiol 21(21):6133–6146

    Article  CAS  Google Scholar 

  78. Guo H, Jin D, Chen X (2014) Lipocalin 2 is a regulator of macrophage polarization and NF-κB/STAT3 pathway activation. Mol Endocrinol 28(10):1616–1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wang B-W, Hung H-F, Chang H et al (2007) Mechanical stretch enhances the expression of resistin gene in cultured cardiomyocytes via tumor necrosis factor. Am J Physiol Hear Circ Physiol 293:2305–2312

    Article  CAS  Google Scholar 

  80. Gupta K, Shukla M, Cowland JB, Malemud CJ, Haqqi TM (2007) Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis Rheum 56(10):3326–3335

    Article  CAS  PubMed  Google Scholar 

  81. Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ, Gualillo O (2011) Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011:203901 (2011)

    Article  Google Scholar 

  82. Gómez R, Scotece M, Conde J et al (2013) Nitric oxide boosts TLR-4 mediated lipocalin 2 expression in chondrocytes. J Orthop Res 31(7):1046–1052

    Article  PubMed  CAS  Google Scholar 

  83. Conde J, Lazzaro V, Scotece M et al (2017) Corticoids synergize with IL-1 in the induction of LCN2. Osteoarthr Cartil 25(7):1172–1178

    Article  CAS  Google Scholar 

  84. Choi WS, Chun JS (2017) Upregulation of lipocalin-2 (LCN2) in osteoarthritic cartilage is not necessary for cartilage destruction in mice. Osteoarthr Cartil 25(3):401–405

    Article  Google Scholar 

  85. Abella V, Pino J, Scotece M et al (2017) Progranulin as a biomarker and potential therapeutic agent. Drug Discov Today 22(10):1557–1564

    Article  CAS  PubMed  Google Scholar 

  86. Wei J-L, Buza Iii J, Liu C-J (2016) Does progranulin account for the opposite effects of etanercept and infliximab/adalimumab in osteoarthritis? J Orthop Res 34(1):12–14

    Article  PubMed  Google Scholar 

  87. Hu F, Padukkavidana T, Vægter CB et al (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68(4):654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carrasquillo MM, Nicholson AM, Finch N et al (2010) Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet 87(6):890–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jian J, Li G, Hettinghouse A, Liu C (2018) Progranulin: a key player in autoimmune diseases. Cytokine 101:48–55

    Article  CAS  PubMed  Google Scholar 

  90. Neill T, Buraschi S, Goyal A et al (2016) EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 215(5):687–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tang W, Lu Y, Tian Q-Y et al (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332(6028):478–484

    Google Scholar 

  92. Wei J, Hettinghouse A, Liu C (2016) The role of progranulin in arthritis. Ann N Y Acad Sci 1383(1):5–20

    Article  CAS  PubMed  Google Scholar 

  93. Abella V, Scotece M, Conde J et al (2016) The novel adipokine progranulin counteracts IL-1 and TLR4-driven inflammatory response in human and murine chondrocytes via TNFR1. Sci. Rep. 6(1):20356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Feng JQ, Guo F-J, Jiang B-C et al (2010) Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J. 24(6):1879–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xia P, Wang X, Lin Q, Li X (2015) Efficacy of mesenchymal stem cells injection for the management of knee osteoarthritis: a systematic review and meta-analysis. Int Orthop 39(12):2363–2372

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

OG and FL are Staff Personnel of Xunta de Galicia (Servizo Galego de Saude, SERGAS) through a research-staff stabilization contract (ISCIII/SERGAS). VF is a “Sara Borrell” Researcher funded by ISCIII and FEDER (CD16/00111). RG is a “Miguel Servet” Researcher funded by Instituto de Salud Carlos III (ISCIII) and FEDER. CRF is a pre-doctoral research scholar funded by ISCIII and FEDER (Exp. 18/00188). OG, MAGG and RG are members of RETICS Programme, RD16/0012/0014 (RIER: Red de Investigación en Inflamación y Enfermedades Reumáticas) via Instituto de Salud Carlos III (ISCIII) and FEDER. FL is a member of CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares).

The work of OG and JP (PI17/00409), RG (PI16/01870 and CP15/00007) and FL (PI15/00681 PI18/00821 and CB16/11/00226) was funded by Instituto de Salud Carlos III and FEDER. OG is a beneficiary of a project funded by Research Executive Agency of the European Union in the framework of MSCA-RISE Action of the H2020 Programme (Project number 734899). RG and OG are beneficiaries of a project funded by Mutua Madrileña 2018.). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. OG is also beneficiary of a grant from Xunta de Galicia, Consellería de Economia, Emprego e Industria, Axencia Galega de Innovación, Grant n° IN607B2019/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oreste Gualillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Francisco, V. et al. (2020). Obesity and Osteoarthritis: Are Adipokines Bridging Metabolism, Inflammation, and Biomechanics?. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_6

Download citation

Publish with us

Policies and ethics