Skip to main content

Important Developments in the History of Ionic Liquids from Academic Curiosity to Commercial Processes and Products

  • Chapter
  • First Online:
Commercial Applications of Ionic Liquids

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Twenty years ago, research involving ionic liquids was a minor field of interest, and only a few chemists and even fewer engineers were interested in salts with melting points near room temperature. In April 2000, the first NATO advanced research workshop on ionic liquids was held in Heraklion, Crete. The conference was the first international meeting devoted to ionic liquids and attracted most of the active researchers at that time. Following that meeting, activity in the field began to flourish and the first books and international conferences devoted to ionic liquids began to appear. By the end of 2018, more than 80,000 scientific papers had been published, and 17,000 patents were applied for in the field of ionic liquids! This book provides an overview of the current and emerging industrial applications of ionic liquids covering the core processes and products, the practical implementation and technical challenges involved, and the potential future directions for research and development. The individual chapters were written by leading scientists in the field from industry and academia to address specific processes and products that are or will be soon commercialized. Examples include the use of a chloroaluminate ionic liquid as a next-generation alkylation catalyst to a new class of capillary gas chromatography (GC) columns with stationary phases based on ionic liquids. Over the past twenty years, there has been a growing realization that ionic liquids have moved from being mere academic curiosities to having genuine applications in fields as wide-ranging as advanced materials, biotechnology, catalysis, pharmaceuticals, renewable fuels, and sustainable energy. There are many optimistic indications that ionic liquids are on their way to becoming a commercial success story. This first book on “Commercial Applications of Ionic Liquids” provides over 50 applications that are either at the pilot scale or have been commercialized, which indicates that an exciting new chapter in the field of ionic liquids is about to begin!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Chevron Energy Technology Company.

  2. 2.

    Honeywell UOP.

  3. 3.

    ISOALKY, Chevron Energy Technology Company, and Honeywell UOP.

  4. 4.

    Commercial suppliers, equipment, instruments, or materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

  5. 5.

    525 Solutions, Inc.

  6. 6.

    IonoSolv , Imperial Innovations.

  7. 7.

    Supelco/Sigma-Aldrich.

  8. 8.

    AECS-QuikPrep Ltd/Quattro.

  9. 9.

    IoLiTec GmbH.

  10. 10.

    Natural Fiber Welding , Inc.

  11. 11.

    Proionic GmbH.

  12. 12.

    Linde GmbH.

  13. 13.

    Proionic GmbH.

  14. 14.

    Wien Energie GmbH.

  15. 15.

    Model IC90 v 1.3, Linde GmbH.

  16. 16.

    BASF SE, Degussa AG, and Merck KGaA.

  17. 17.

    Solvent Innovation GmbH and IoLiTec GmbH.

  18. 18.

    Scionix Ltd. and Bioniqs Ltd.

  19. 19.

    Solvent Innovation GmbH.

  20. 20.

    Degussa AG (Evonik Industries AG since 2007).

  21. 21.

    ECOENG 500, Solvent Innovation GmbH.

  22. 22.

    AMMOENG, Solvent Innovation GmbH.

  23. 23.

    Merck KGaA.

  24. 24.

    IoLiTec GmbH.

  25. 25.

    Solvent Innovation GmbH.

  26. 26.

    Including IoLiSens® for sensor technology, IoLiTherm® for thermofluids, IoLiLyte® for electrolytes, and IoLiTive® for additives, IoLiTec GmbH.

  27. 27.

    ZFHN Zukunftsfonds Heilbronn GmbH & Co. KG.

  28. 28.

    Scionix Ltd.

  29. 29.

    Genacys Ltd., a subsidiary of the Whyte Group Ltd.

  30. 30.

    Grosvenor Chemicals Ltd.

  31. 31.

    Scionix Ltd.

  32. 32.

    Bioniqs Ltd.

  33. 33.

    Merck KGaA.

  34. 34.

    ECONIQS, Bioniqs Ltd.

  35. 35.

    Solvionic SA.

  36. 36.

    Proionic GmbH.

  37. 37.

    Carbonate Base Ionic Liquid Synthesis, CBILS ®, Proionic GmbH.

  38. 38.

    VTU Group GmbH.

  39. 39.

    BASF SE, Merck KGaA, Degussa AG, and Acros.

  40. 40.

    Merck KGaA.

  41. 41.

    BASF SE.

  42. 42.

    Solvent Innovation GmbH.

  43. 43.

    Sigma-Aldrich.

  44. 44.

    Performance Materials, Merck KGaA.

  45. 45.

    BASF SE.

  46. 46.

    BASIONICS, BASF SE.

  47. 47.

    Sigma-Aldrich.

  48. 48.

    BASIL, BASF SE.

  49. 49.

    Eastman Chemical Company.

  50. 50.

    LUCIRINES®, BASF SE.

  51. 51.

    Basionics BC01 [C2C1im][Ace], HP01 [C2C1im][NTf2], LQ01 [C2C1im][C2SO4], ST70 [C4C1im][Cl], ST80 [C2C1im][Cl], VS03 [C2C1im][N(CN)2], FS01 [N1 2OH 2OH 2OH][C1SO4], and the formulation [C2C1im][C1CO3] in methanol, respectively.

  52. 52.

    Degussa AG (Evonik Industries AG since 2007).

  53. 53.

    TEGO Dispers®, Degussa AG (Evonik Industries AG since 2007).

  54. 54.

    BASF SE, IoLiTec GmbH, Merck KGaA, Proionic GmbH, Solvionic SA, Evonik Industries AG, and QUILL .

References

  1. Walden P (1914) Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze. Bull Imp Acad Sci St.-Pétersbourg 8:405–422

    Google Scholar 

  2. Vaubel W (1903) Lehrbuch der theoretischen Chemie. Erster Band. Materie und Energie – Molekül und Lösung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50729-8

  3. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte 84:71–85. https://www.lenzing.com/fileadmin/content/PDF/03_Forschung_u_Entwicklung/Ausgabe_84_2005.pdf. Accessed on 2019-06-12

  4. Freemantle M (2010) An introduction to ionic liquids. RSC Publishing, Cambridge

    Google Scholar 

  5. Pernak J, Rzemieniecki T, Materna K (2016) Ionic liquids “in a nutshell” (history, properties and development). Chemik 70:471–480

    CAS  Google Scholar 

  6. Nambu N, Hiraoka N, Shigemura K, Hamanaka S, Ogawa M (1976) A study of the 1,3,5-trialkylbenzenes with aluminum chloride-hydrogen chloride systems. Bull Chem Soc Jpn 49:3637–3640. https://doi.org/10.1246/bcsj.49.3637

    Article  CAS  Google Scholar 

  7. Schall C (1908) Über organische und geschmolzene Salze (Eine Leitfähigkeitsstudie). Z Elektrochem 14:397–405. https://doi.org/10.1002/bbpc.19080143002

    Article  CAS  Google Scholar 

  8. Ramsay W (1876) On picoline and its derivatives. Phil Mag 2(5th series):269–281. https://doi.org/10.1080/14786447608639105

  9. MacFarlane D, Kar M, Pringle JM (2017) Fundamentals of ionic liquids: from chemistry to applications. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527340033

  10. Walden P (1950) Aus den Erinnerungen eines alten chemischen Zeitgenossen. Naturwiss 37(4):73–81. https://doi.org/10.1007/BF00631950; Walden P (1951) Notes from the life of a chemist. J Chem Educ 28:160–163. https://doi.org/10.1021/ed028p160

  11. Morachevskii AG (2003) Academician Pavel Ivanovich Walden (on 140th anniversary of his birthday). Russ J Appl Chem 76:1186–1190. https://doi.org/10.1023/A:1026399420965

    Article  CAS  Google Scholar 

  12. Everts S (2013) Latvia celebrates Paul Walden. Chem Eng News 91(29):28–29. https://doi.org/10.1021/cen-09129-scitech

    Article  Google Scholar 

  13. Walden P (1896) Ueber die gegenseitige Umwandlung optischer Antipoden. Ber Dt Chem Ges 29(1):133–138. https://doi.org/10.1002/cber.18960290127

    Article  Google Scholar 

  14. Stradiņš J (2011) Pauls Valdens – latviešu nācijas pazaudētais un Ķīmijas gadā jaunatrastais dēls, Latvijas Zinātņu akadēmija (Latvian Academy of Sciences), Zinātnes Vēstnesis - 2011.g. 26.septembris, 11(422)

    Google Scholar 

  15. University of Rostock. http://purl.uni-rostock.de/cpr/00002667. “Paul Walden” in Catalogus Professorum Rostochiensium. Accessed on 2019-01-16

  16. Maier H (2015) Chemiker im “Dritten Reich”. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527694631

  17. Lockemann G (1953) Paul von Walden, dem Nestor der Chemie, zum 90. Geburtstage am 26. Juli 1953, Naturwiss 40(14):373–374. https://doi.org/10.1007/BF00589294

  18. Institute of Organic Chemistry, University of Tübingen. http://www.oc2.chemie.uni-tuebingen.de/history/paul_walden/paul_walden.htm. Accessed on 2019-01-16

  19. The Riga Tourism Development Bureau Foundation. https://www.liveriga.com/en/3370-denkmal-fur-paul-walden. Accessed on 2019-01-16

  20. Emel’yanenko VN, Boeck G, Verevkin SP, Ludwig R (2014) Volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate. Chem Eur J 20:11640–11645. https://doi.org/10.1002/chem.201403508

  21. Barrer RM (1943) The viscosity of pure liquids. II. Polymerized ionic melts, Trans Faraday Soc 39:59–67. https://doi.org/10.1039/TF9433900059

  22. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80. https://doi.org/10.1039/b110838g

    Article  CAS  Google Scholar 

  23. Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706. https://doi.org/10.1007/s12551-018-0419-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiflett MB, Scurto AM (2017) Ionic liquids: current state and future directions. ACS Symp Ser 1250:1–13. https://doi.org/10.1021/bk-2017-1250.ch001

    Article  CAS  Google Scholar 

  25. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH Jr, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436. https://doi.org/10.1039/b706677p

    Article  CAS  Google Scholar 

  26. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967. https://doi.org/10.1039/C39920000965

  27. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206. https://doi.org/10.1021/cr050942s

    Article  CAS  PubMed  Google Scholar 

  28. Jordan A, Gathergood N (2015) Biodegradation of ionic liquids—a critical review. Chem Soc Rev 44:8200–8237. https://doi.org/10.1039/C5CS00444F

    Article  CAS  PubMed  Google Scholar 

  29. Pena-Pereira F, Namieśnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 7:1784–1800. https://doi.org/10.1002/cssc.201301192

    Article  CAS  PubMed  Google Scholar 

  30. Ferraz R, Branco LC, Prudêncio C, Noronha JP, Petrovski Ž (2011) Ionic liquids as active pharmaceutical ingredients. ChemMedChem 6:975–985. https://doi.org/10.1002/cmdc.201100082

    Article  CAS  PubMed  Google Scholar 

  31. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562

    Article  CAS  PubMed  Google Scholar 

  32. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  33. Maginn EJ (2007) Atomistic simulation of the thermodynamic and transport properties of ionic liquids. Acc Chem Res 40:1200–1207. https://doi.org/10.1021/ar700163c

    Article  CAS  PubMed  Google Scholar 

  34. Chevron Energy Technology Company, San Ramon, CA. https://www.chevron.com/technology. Accessed on 2019-02-10

  35. Honeywell UOP, Des Plaines, IL. https://www.uop.com/. Accessed on 2019-02-10

  36. Privatdozent Dr. Marco Haumann, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg. https://www.crt.tf.fau.eu/person/pd-dr-marco-haumann/. Accessed on 2019-02-10

  37. Professor Dr. Peter Wasserscheid, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg. https://www.crt.tf.fau.eu/person/prof-dr-peter-wasserscheid/. Accessed on 2019-02-10

  38. Helmholtz Institute Erlangen-Nürnberg (HI ERN) for Renewable Energy Production. https://www.hi-ern.de/EN/HOME/node.html. Accessed on 2019-02-10

  39. Solutions, Inc., Tuscaloosa AL. http://www.525solutions.com/. Accessed on 2019-02-10

  40. Professor Jason P. Hallett, Imperial College London. https://www.imperial.ac.uk/people/j.hallett. Accessed on 2019-02-10

  41. Professor Daniel W. Armstrong, University of Texas at Arlington. https://www.uta.edu/chemistry/faculty/dan_armstrong.php. Accessed on 2019-02-10

  42. Sigma-Aldrich Ionic Liquid Gas Chromatography Columns. https://www.sigmaaldrich.com/analytical-chromatography/analytical-products.html. Accessed on 2019-02-10

  43. Queen’s University Ionic Liquids Laboratory (QUILL), Belfast. https://www.qub.ac.uk/schools/SchoolofChemistryandChemicalEngineering/Research/QUILL/. Accessed on 2019-02-10

  44. AECS-QuikPrep Ltd/Quattro, London. http://www.quattroprep.com/. Accessed on 2019-02-10

  45. IoLiTec Ionic Liquids Technologies GmbH, Heilbronn. https://www.iolitec.de/. Accessed on 2019-02-10

  46. Natural Fiber Welding, Inc., Peoria IL. http://www.naturalfiberwelding.com/. Accessed on 2019-02-10

  47. Professor David Durkin and Professor Paul Trulove, U.S. Naval Academy, Annapolis MD. https://www.usna.edu/ChemDept/faculty/index.php. Accessed on 2019-02-10

  48. German Institutes of Textile and Fiber Research (DTIF), Denkendorf. https://www.ditf.de/en/index/ditf.html. Accessed on 2019-02-10

  49. Professor Dr. Michael R. Buchmeiser, University of Stuttgart. https://www.ipoc.uni-stuttgart.de/institute/team/Buchmeiser-00003/. Accessed on 2019-02-10

  50. Proionic GmbH, Grambach. https://www.proionic.com/. Accessed on 2019-02-10

  51. Cowan B (1984) Liquid piston compression systems for compressing steam. United States Patent 4,566,860

    Google Scholar 

  52. Pieperbeck B (2000) Verfahren und Verdichter zum Komprimieren von Gasen. Offenlegungs-schrift DE 198 48 234 A1

    Google Scholar 

  53. Kömpf M (2006) Mobility under high pressure. In: Linde AG (ed) Linde technology, Linde reports on science and technology, pp 24–29. ISSN 1612-2232

    Google Scholar 

  54. Dyson PJ, Laurenczy G, Ohlin CA, Vallance J, Welton T (2003) Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun 2418–2419. https://doi.org/10.1039/B308309H

  55. Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G (2006) Solubility of H2 in the ionic liquid [bmim][PF6]. J Chem Eng Data 51:11–14. https://doi.org/10.1021/je050362s

  56. Kumełan J, Pérez-Salado Kamps A, Tuma D, Maurer G (2006) Solubility of H2 in the ionic liquid [hmim][Tf2N]. J Chem Eng Data 51:1364–1367. https://doi.org/10.1021/je060087p

  57. Finotello A, Bara JE, Narayan S, Camper D, Noble RD (2008) Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids. J Phys Chem B 112:2335–2339. https://doi.org/10.1021/jp075572l

    Article  CAS  PubMed  Google Scholar 

  58. Anderson JL, Anthony JL, Brennecke JF, Maginn EJ (2008) Gas solubilities in ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 103–129. https://doi.org/10.1002/9783527621194.ch3

  59. Beutier D, Renon H (1978) Gas solubilities near the solvent critical point. AIChE J 24:1122–1125. https://doi.org/10.1002/aic.690240628

    Article  Google Scholar 

  60. Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G (2009) Solubility of the single gases carbon monoxide and oxygen in the ionic liquid [hmim][Tf2N]. J Chem Eng Data 54:966–971. https://doi.org/10.1021/je8007556

  61. Mayer M (2014) From prototype to serial production. Manufacturing hydrogen fueling stations. Presented at Eco-Mobility 2014, Austrian Association for Advanced Propulsion Systems A3PS, Vienna, Austria, 20–21 Oct 2014

    Google Scholar 

  62. Adler R, Siebert G (2006) Method and device for compressing a gaseous medium. WO 2006/034748 A1

    Google Scholar 

  63. Kotschan M, Kalb R (2006) Liquid for compressing a gaseous medium and use of the same. WO 2006/120145 A1

    Google Scholar 

  64. Adler R, Mayer H (2008) Pistonless compressor. WO 2008/031527 A1

    Google Scholar 

  65. SAE International, Warrendale PA. www.sae.org. Accessed on 2019-02-10

  66. Linde AG (2014) Hydrogen technologies. The Ionic Compressor 90 MPa–IC 90. Datasheet 358503.

    Google Scholar 

  67. Linde AG (2015) The driving force. Managing hydrogen projects with Linde. Brochure tcm14-233488.

    Google Scholar 

  68. Beckman M (2014) Linde hydrogen fueling overview. Presentation at Washington DC, 18 Nov 2014

    Google Scholar 

  69. Arjomand Kermani N, Rokni M, Elmegaard B (2017) Design and prototyping of an ionic liquid piston compressor as a new generation of compressors for hydrogen refueling stations. Technical University of Denmark (DTU), DCAMM Special Report No. S229

    Google Scholar 

  70. European Chemicals Agency (ECHA), Helsinki. https://echa.europa.edu/; [C2C1im][NTf2] is filed under the EC List no. 700-235-5, [C2C1im][OTf] under 680-002-1

  71. Raeissi S, Schilderman AM, Peters CJ (2013) High pressure phase behavior of mixtures of hydrogen and the ionic liquid family [cnmim][Tf2N]. J Supercrit Fluids 73:126–129. https://doi.org/10.1016/j.supflu.2012.09.003

    Article  CAS  Google Scholar 

  72. Kazakov A, Magee JW, Chirico RD, Paulechka E, Diky V, Muzny CD, Kroenlein K, Frenkel M (2019) NIST standard reference database 147: NIST ionic liquid database (ILThermo), Version 2.0. National Institute of Standards and Technology, Gaithersburg MD, 20899. https://ilthermo.boulder.nist.gov. Accessed on 2019-01-16

  73. Magee JW (2003) Papers presented at the workshop on ionic liquids, ICCT, Rostock, Germany, July 28 to August 2, 2002. J Chem Eng Data 48:445. https://doi.org/10.1021/je0304771

    Article  CAS  Google Scholar 

  74. Marsh KN, Brennecke JF, Chirico RD, Frenkel M, Heintz A, Magee JW, Peters CJ, Rebelo LPN, Seddon KR (2009) Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures) Part 1. Experimental methods and results. Pure Appl Chem 81:781–790. https://doi.org/10.1351/PAC-REP-08-09-21

  75. Chirico RD, Frenkel M, Magee JW, Diky V, Muzny CD, Kazakov AF, Kroenlein K, Abdulagatov I, Hardin GR, Acree WE Jr, Brennecke JF, Brown PL, Cummings PT, De Loos TW, Friend DG, Goodwin ARH, Hansen LD, Haynes WM, Koga N, Mandelis A, Marsh KN, Mathias PM, McCabe C, O’Connell JP, Padua A, Rives V, Schick C, Trusler JPM, Vyazovkin S, Weir RD, Wu J (2013) Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J Chem Eng Data 58:2699–2716. https://doi.org/10.1021/je400569s

    Article  CAS  Google Scholar 

  76. Chirico RD, Diky V, Magee JW, Frenkel M, Marsh KN (2009) Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures) Part 2. Critical evaluation and recommended property values. Pure Appl Chem 81:791–828. https://doi.org/10.1351/PAC-REP-08-09-22

  77. Magee JW, Widegren JA, Frenkel M, Dong Q, Muzny C, Chirico RD, Diky VV (2005) Comprehensive data retrieval system for ionic liquids. In: 1st International Congress on Ionic Liquids, Salzburg, Austria, 19–22 June 2005

    Google Scholar 

  78. Dong Q, Muzny CD, Kazakov A, Diky V, Magee JW, Widegren JA, Chirico RD, Marsh KN, Frenkel M (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159. https://doi.org/10.1021/je700171f

    Article  CAS  Google Scholar 

  79. Seddon KR (1999) QUILL rewrites the future of industrial solvents. Green Chem 1:G58–G59. https://doi.org/10.1039/GC990G58

    Article  Google Scholar 

  80. Plechkova NV, Seddon KR (2007) Ionic liquids: “designer” solvents for green chemistry. In: Tundo P, Perosa A, Zecchini F (eds) Methods and reagents for green chemistry: an introduction. Wiley, Hoboken NJ, pp 105–130. https://doi.org/10.1002/9780470124086.ch5

  81. Rogers RD, Seddon KR, Volkov S (2002) Green industrial applications of ionic liquids. NATO Sci Ser 92. https://doi.org/10.1007/978-94-010-0127-4

  82. Atkins MP, Davey P, Fitzwater G, Rouher O, Seddon KR, Swindall J (2004) Ionic liquids: a map for industrial innovation, Report Q001, January 2004. QUILL, Belfast, UK

    Google Scholar 

  83. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in chemical industry. Chem Soc Rev 37:123–150. https://doi.org/10.1039/b006677j

    Article  CAS  PubMed  Google Scholar 

  84. DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e. V. (Society for Chemical Engineering and Biotechnology), Frankfurt am Main. https://dechema.de/en/. Accessed on 2019-01-16

  85. Leitner W, Seddon KR, Wasserscheid P (2003) Foreword: green solvents for catalysis. Green Chem 5:G28. https://doi.org/10.1039/B302757K

    Article  Google Scholar 

  86. Behr A, Hoff A, Leitner W, Wasserscheid P (2006) Advanced Fluids – neue Lösungsmittelkonzepte für die Prozess- und Produktoptimierung, Positionspapier des DECHEMA-Arbeitskreises „Alternative Lösungsmittelsysteme für technische Anwendungen“. DECHEMA e. V., Frankfurt am Main

    Google Scholar 

  87. Runge W (2014) Technology entrepreneurship. A treatise on entrepreneurs and entrepreneurship for and in technology ventures, vols 1 and 2. Karlsruher Institut für Technologie, KIT Scientific Publishing, Karlsruhe. http://dx.doi.org/10.5445/KSP/1000036459 (vol 1); http://dx.doi.org/10.5445/KSP/1000036460 (vol 2)

  88. Initiative Der Deutsche Innovationspreis. http://www.der-deutsche-innovationspreis.de. Accessed on 2019-01-16

  89. ZFHN Zukunftsfonds Heilbronn GmbH & Co. KG. https://www.zf-hn.de. Accessed on 2019-01-16

  90. Scionix Ltd., London. http://www.scionix.co.uk. Accessed on 2019-01-16

  91. Hembury GA, Sullivan N, Tate L, Fairless G, Newton R (2009) Standards for Green Solvents: An Example Using Ionic Liquids. In: 13th Annual Green Chemistry & Engineering Conference, College Park MD, 23–25 June 2009

    Google Scholar 

  92. Extraction of artemisinin using ionic liquids (2008) Bioniqs project report 003-003/2. Bioniqs Ltd., Heslington, York

    Google Scholar 

  93. Solvionic SA, Toulouse. http://en.solvionic.com/presentation. Accessed on 2019-01-16

  94. Solvionic SA, Toulouse. http://en.solvionic.com/research-projects; https://www.magenta-h2020.eu. Accessed on 2019-01-16

  95. Kalb RS, Stepurko EN, Emel’yanenko VN, Verevkin SP (2016) Carbonate based ionic liquid synthesis (CBILS®): thermodynamic analysis. Phys Chem Chem Phys 18:31904–31913. https://doi.org/10.1039/C6CP06594E

  96. Kalb RS, Damm M, Verevkin SP (2017) Carbonate based ionic liquid synthesis (CBILS®): development of the continuous flow method for preparation of ultra-pure ionic liquids. React Chem Eng 2:432–436. https://doi.org/10.1039/C7RE00028F

    Article  CAS  Google Scholar 

  97. Sigma-Aldrich Chemie GmbH, Munich. https://www.sigmaaldrich.com/chemistry/chemical-synthesis/technology-spotlights/cbils.html. Accessed on 2019-01-16

  98. Massonne K (2010) Ionic liquids at BASF SE, Leuven Ionic Liquids Summer School, 23–27 Aug 2010. Leuven/Louvain, Belgium

    Google Scholar 

  99. VTU Group GmbH, Raaba-Grambach. https://www.vtu.com/en. Accessed on 2019-01-16

  100. Freemantle M (2004) Ionic liquids in organic synthesis. Room-temperature ionic liquids provide unique environment for organic reactions. Chem Eng News 82(45):44–49. https://doi.org/10.1021/cen-v082n045.p044

  101. Ignat’ev NV, Welz-Biermann U, Kucheryna A, Bissky G, Willner H (2005) New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions. J Fluorine Chem 126:1150–1159. https://doi.org/10.1016/j.jfluchem.2005.04.017

  102. Ignat’ev NV, Pitner W-R, Welz-Biermann U (2007) Synthesis and application of new ionic liquids with tris(perfluoroalkyl)trifluorophosphate anions. ACS Symp Ser 950:281–287. https://doi.org/10.1021/bk-2007-0950.ch022

  103. Merck KGaA, Darmstadt. https://www.merckgroup.com/en/performance-materials.html; https://www.ionic-liquids.com. Accessed on 2019-01-16

  104. BASF SE, Ludwigshafen. http://www.intermediates.basf.com/chemicals/ionic-liquids/index. Accessed on 2019-01-16

  105. Basionics and Basil. Ionic liquids—Solutions for Your Success (2005) CZ 0510-06/05, BASF SE, Ludwigshafen

    Google Scholar 

  106. Freemantle M (2003) BASF’s smart ionic liquid. Process scavenges acid on a large scale without producing solids. Chem Eng News 81(13):9. https://doi.org/10.1021/cen-v081n013.p009

  107. Maase M (2004) Erstes technisches Verfahren mit ionischen Flüssigkeiten. Chem unserer Zeit 38:434–435. https://doi.org/10.1002/ciuz.200490093

    Article  Google Scholar 

  108. Maase M (2008) Industrial applications of ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 663–687. https://doi.org/10.1002/9783527621194.ch9

  109. Saling P, Maase M, Vagt U (2010) Eco-efficiency analysis of an industrially implemented ionic liquid-based process—the BASF BASIL process. In: Anastas PT (ed) Handbook of green chemistry, green solvents, vol 6; Wasserscheid P, Stark A (eds) Ionic liquids, Wiley-VCH, Weinheim, pp 299–314. https://doi.org/10.1002/9783527628698.hgc070

  110. Maase M (2005) BASIL process. In: Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis, vol 2. Wiley-VCH, Weinheim, pp 560–566. https://doi.org/10.1002/9783527619597.ch5c

  111. BASF intermediates product catalogue: We create chemistry. Building blocks and reagents for our customers’ needs (2012) CZ 1203-02/12-20.000, BASF SE, Ludwigshafen. http://www.intermediates.basf.com/chemicals/brochures/intermediates. Accessed on 2019-01-16

  112. Hoff A, Jost C, Prodi-Schwab A, Schmidt FG, Weyershausen B (2004) Ionic liquids. New designer compounds for more. Elements (Degussa Science Newsletter) 09:10–15

    Google Scholar 

  113. Franke R, Hahn H (2015) A catalyst that goes to its limits. Elements 51(2):18–23. https://corporate.evonik.com/en/products. Accessed on 2019-01-16

  114. Technology advancements in ionic liquids (TechVision) (2016). Market research report, CM00755-GL-TR_16372, Frost & Sullivan, Mountain View CA.

    Google Scholar 

  115. Ionic liquids market size and forecast by application (Solvents and catalysts, extractions and separations, bio-refineries, energy storage), by Region (North America, Europe, Asia Pacific, Latin America and Middle East & Africa) and Trend analysis from 2018 to 2025 (2016) Market research report, Report ID GVR-1-68038-283-9, Grand View Research Inc., San Francisco CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark B. Shiflett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiflett, M.B., Magee, J.W., Tuma, D. (2020). Important Developments in the History of Ionic Liquids from Academic Curiosity to Commercial Processes and Products. In: Shiflett, M. (eds) Commercial Applications of Ionic Liquids. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-35245-5_1

Download citation

Publish with us

Policies and ethics