Skip to main content

The Coal Farms of the Late Paleozoic

  • Chapter
  • First Online:

Abstract

The assembly of the supercontinent Pangea resulted in a paleoequatorial region known as Euramerica, a northern mid-to-high latitude region called Angara, and a southern high paleolatitudinal region named Gondwana. Forested peat swamps, extending over hundreds of thousands of square kilometers, grew across this supercontinent during the Mississippian, Pennsylvanian, and Permian in response to changes in global climate. The plants that accumulated as peat do not belong to the plant groups prominent across today’s landscapes. Rather, the plant groups of the Late Paleozoic that are responsible for most of the biomass in these swamps belong to the fern and fern allies: club mosses, horsetails, and true ferns. Gymnosperms of various systematic affinity play a subdominant role in these swamps, and these plants were more common outside of wetland settings. It is not until the Permian when these seed-bearing plants become more dominant. Due to tectonic activity associated with assembling the supercontinent, including earthquakes and volcanic ashfall, a number of these forests were buried in their growth positions. These instants in time, often referred to as T0 assemblages, provide insight into the paleoecological relationships that operated therein. Details of T0 localities through the Late Paleozoic demonstrate that the plants, and plant communities, of the coal forests are non-analogs to our modern world. Analysis of changing vegetational patterns from the Mississippian into the Permian documents the response of landscapes to overall changes in Earth Systems under icehouse to hothouse conditions.

Electronic supplementary material

A slide presentation and an explanation of each slide’s content is freely available to everyone upon request via email to one of the editors: edoardo.martinetto@unito.it, ragastal@colby.edu, tschopp.e@gmail.com*The asterisk designates terms explained in the Glossary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alleman V, Pefferkorn HW (1988) Licopodos de Paracas: Significación geológica y paleo-climatológica. Bolletin Sociedad Geologoie Perú 78:131–136

    Google Scholar 

  • Anderson JM, Anderson HM, Achangelsky S, Bamford M, Chandra S, Dettmann M, Hill R, McLoughlin S, Rösler O (1999) Patterns of Gondwana plant colonisation and diversification. J Afr Earth Sci 28:145–167

    Google Scholar 

  • Bamford MK (2016) Fossil woods from the Upper Carboniferous to Lower Jurassic Karoo Basin and the environmental interpretation. In: Linol B, de Wit M (eds) Origin and evolution of the Cape Mountains and Karoo Basin. Regional geology reviews. Springer, Berlin, pp 158–167. https://doi.org/10.1007/978-3-319-40859-0_16

    Chapter  Google Scholar 

  • Bek J, Libertín M, Drábková J (2009) Spencerites leismanii sp. nov., a new sub-arborescent compression lycopsid and its spores from the Pennsylvanian of the Czech Republic. Rev Palaeobot Palynol 155:116–132

    Google Scholar 

  • Cagliari J, Lavina ELC, Philipp RP, Tognoli FMW, Basei MAS, Faccini UF (2014) New Sakmarian ages for the Rio Bonito formation (Paraná Basin, southern Brazil) based on LA-ICP-MS U-Pb radiometric dating of zircons crystals. J S Am Earth Sci 56:265–277

    Google Scholar 

  • Calder JH (2012) The Joggins fossil cliffs: coal age Galápagos. Nova Scotia Department of Natural Resources, Halifax. 96 p

    Google Scholar 

  • Calder JH, Gibling MR, Scott AC, Hebert BL (2006) A fossil lycopsid forest succession in the classic Joggins section of Nova Scotia: paleoecology of a disturbance-prone Pennsylvanian wetland. In: Greb SF, DiMichele WA (eds) Wetlands through time, vol 399. Geological Society of America, Boulder, pp 169–195

    Google Scholar 

  • Carroll RL (1964) The earliest reptiles. Journal of the Linneann Society Zoology 45:61–83

    Google Scholar 

  • Césari SN, Limarino CO, Gulbranson EL (2011) An upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana. Earth Science Reviews 106:149–160

    Google Scholar 

  • Chaloner WG, Leistikow KU, Hill A (1979) Brasilodendron gen. nov. and B. pedroanum (Carruthers) comb. nov., a permian lycopod from Brazil. Rev Palaeobot Palynol 28:117–136

    Google Scholar 

  • Christiano-de-Souza IC, Ricardi-Branco FS (2015) Study of the West Gondwana Floras during the Late Paleozoic: a paleogeographic approach in the Paraná Basin – Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 426:159–169

    Google Scholar 

  • Cleal CL, Uhl D, Cascales-Miñana B, Thomas BA, Bashforth AR, King SC, Zodrow EL (2012) Plant biodiversity changes in Carboniferous tropical wetlands. Earth-Sci Rev 114:124–155

    Google Scholar 

  • Cotta B (1832) Die Dendrolithen in Bezug auf ihren inneren Bau. Arnoldische Buchhandlung, Leipzig. 89 pp

    Google Scholar 

  • Da Costa L, Kionka DCO, Périco E, Japser A (2016) Identificação de carvão vegetal macroscópico no nível de roof-shale do Afloramento Quitéria, Formação Rio Bonito, permiano inferior da Bacia do Paraná. Geosul, Florianópolis 31(61):133–154

    Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection. John Murray, London. 513 p

    Google Scholar 

  • Davies SJ, Gibling MR (2003) Architecture of coastal and alluvial deposits in an extensional basin: the Carboniferous Joggins Formation of eastern Canada. Sedimentology 50:415–439

    Google Scholar 

  • Davies SJ, Gibling MR, Rygel MC, Calder JH, Skilliter DM (2005) The Pennsylvanian Joggins Formation of Nova Scotia: sedimentological log and stratigraphic framework of the historic fossil cliffs. Atl Geol 41:115–142

    Google Scholar 

  • di Pasquo M, Iannuzzi R (2014) New palynological information from the Poti Formation (upper Visean) at the Roncador creek, Parnaíba Basin, northeastern Brazil. Bolletin Geologie y Mineralogie 125:405–435

    Google Scholar 

  • DiMichele WA (2014) Wetland-dryland vegetational dynamics in the Pennsylvanian ice age tropics. Int J Plant Sci 175:123–164

    Google Scholar 

  • DiMichele WA, Phillips TL (1988) Paleoecology of the Middle Pennsylvanian age Herrin coal swamp (Illinois) near a contemporaneous river system, the Walshville paleochannel. Rev Palaeobot Palynol 56:151–176

    Google Scholar 

  • DiMichele WA, Phillips TL (1994) Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeogr Palaeoclimatol Palaeoecol 106:39–90

    Google Scholar 

  • DiMichele WA, Phillips TL (1996) Climate change, plant extinctions, and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peatforming environments in North America. In: Hart ML (ed) Biotic recovery from mass extinction events, vol 102. Geological Society Special Publication, London, pp 201–221

    Google Scholar 

  • DiMichele WA, Pfefferkorn HW, Gastaldo RA (2001) Response of Late Carboniferous and Early Permian plant communities to climate change. Annu Rev Earth Planet Sci 29:461–487

    Google Scholar 

  • DiMichele WA, Tabor NJ, Chaney DS, Nelson WJ (2006) From wetlands to wet spots: environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. Geol Soc Am Spec Pap 399:223–248

    Google Scholar 

  • DiMichele WA, Elrick SD, Nelson WJ (2017) Vegetational zonation in a swamp forest, Middle Pennsylvanian, Illinois Basin, U.S.A., indicates niche differentiation in a wetland plant community. Palaeogeogr Palaeoclimatol Palaeoecol 487:71–92

    Google Scholar 

  • Dolianiti E (1954) A flora do Carbonífero Inferior de Teresina, Piauí. Depart Nacional Prod Mineral Div Geol Mineral, Boletim 148:1–56

    Google Scholar 

  • Dunlop JA, Rößler R (2013) The youngest trigonotarbid Permotarbus schuberti n. gen., n. sp. from the Permian Petrified Forest of Chemnitz in Germany. Foss Rec 16:229–243

    Google Scholar 

  • Dunlop JA, Legg DA, Selden PA, Fet V, Schneider JW, Rößler R (2016) Permian scorpions from the Petrified Forest of Chemnitz, Germany. BMC Evol Biol 16:72

    Google Scholar 

  • Fielding CR, Frank TD, Birgenheier LP, Rygel MC, Jones AT, Roberts J (2008) Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime. J Geol Soc 165:129–140

    Google Scholar 

  • Galtier J (1997) Coal-ball floras of the Namurian–Westphalian of Europe. Rev Palaeobot Palynol 95:51–72

    Google Scholar 

  • Gastaldo RA (1986a) Implications on the paleoecology of autochthonous Carboniferous lycopods in clastic sedimentary environments. Paleogeogr Paleoclimatol Paleoecol 53:191–212

    Google Scholar 

  • Gastaldo RA (1986b) An explanation for lycopod configuration, ‘Fossil Grove’ Victoria Park, Glasgow. Scott J Geol 22:77–83

    Google Scholar 

  • Gastaldo RA (1988) The frond architecture of Sphenopteris pottsvillea (White) Gastaldo and Boersma. J Paleontol 62:982–991

    Google Scholar 

  • Gastaldo RA (1990) Earliest evidence for helical crown configuration in a Carboniferous tree of uncertain affinity. J Paleontol 64:146–151

    Google Scholar 

  • Gastaldo RA (1992) Regenerative growth in fossil horsetails (Calamites) following burial by Alluvium. Hist Biol 6:203–220

    Google Scholar 

  • Gastaldo RA, Pfefferkorn HW, DiMichele WA (1995) Taphonomic and sedimentologic characterization of “roof-shale” floras. In: Lyons P, Wagner RH, Morey E (eds) Historical persepctive of Early Twentieth Century Carboniferous Paleobotany in North America, vol 185. Geological Society of America Memoirs, Boulder, pp 341–352

    Google Scholar 

  • Gastaldo RA, DiMichele WA, Pfefferkorn HW (1996) Out of the icehouse into the greenhouse: a late paleozoic analogue for modern global vegetational change. GSA Today 10:1–7

    Google Scholar 

  • Gastaldo RA, Stevanovic-Walls I, Ware WN, Greb SF (2004a) Community heterogeneity of Early Pennsylvanian peat mires. Geology 32:693–696

    Google Scholar 

  • Gastaldo RA, Stevanovic-Walls I, Ware WN (2004b) In Situ, Erect Forests Are Evidence for Large-Magnitude, coseismic base-Level Changes within Pennsylvanian cyclothems of the Black Warrior Basin, USA. In: Pashin JC, Gastaldo RA (eds) coal-bearing strata: sequence stratigraphy, paleoclimate, and tectonics, vol 51. AAPG Studies in Geology, Tulsa, pp 219–238

    Google Scholar 

  • Gastaldo RA, Purkyňová E, Šimůnek Z, Schmitz MD (2009) Ecological Persistence in the Late Mississippian (Serpukhovian – Namurian A) Megafloral Record of the Upper Silesian Basin, Czech Republic. PALAIOS 24:336–350

    Google Scholar 

  • Greb SF, DiMichele WD, Gastaldo RA (2006) Evolution of wetland types and the importance of wetlands in earth history. In: DiMichele WA, Greb S (eds) Wetlands Through Time, vol 399. Geological Society of America Special Publication, Boulder, pp 1–40

    Google Scholar 

  • Guerra-Sommer M, Cazzulo-Klepzig M, Jasper A, Kalkreuth W, Menegat R, Barboza EG (2008) Palaeoecological patterns at the coal-roof shale transition in an outcrop of the Permian Brazilian Gondwana. Revista Brasil de Paleontologie 11:11–26

    Google Scholar 

  • Hill RS, Truswell EM, McLoughlin S, Dettmann ME (1999) The evolution of the Australian flora: fossil evidence. In: Orchard AE (ed) Flora of Australia, 1 (Introduction), 2nd edn. CSIRO, Melbourne, pp 251–320

    Google Scholar 

  • Iannuzzi R (2010) The flora of early Permian coal measures from the Paraná Basin in Brazil: a review. Int J Coal Geol 83:229–247

    Google Scholar 

  • Iannuzzi R, & Boardman DR (2008) Novas ocorrências de Botrychiopsis plantiana (Carr.) Arch. and Arrondo no Afloramento Quitéria, Permiano Inferior, Rio Grande do Sul: implicações bioestratigráficas. In: 12° Simpósio de Paleobotânicos e Palinólogos (Florianópolis), Boletim de Resumos, p 95

    Google Scholar 

  • Iannuzzi R, Pfefferkorn HW (2002) A pre-glacial, warm-temperate floral belt in Gondwana (late Visean, Early Carboniferous). PALAIOS 17:571–590

    Google Scholar 

  • Iannuzzi R, Pfefferkorn HW (2014) Re-interpreting Kegelidium lamegoi Dolianiti, a microsporangiate organ from the Poti Formation (Late Visean), Parnaíba Basin, northeastern Brazil. Comunication Geológie 101:451–453

    Google Scholar 

  • Iannuzzi R, Rösler O (2000) Floristic migration in South America during the Carboniferous: phytogeographic and biostratigraphic implications. Palaeogeogr Palaeoclimatol Palaeoecol 161:71–94

    Google Scholar 

  • Iannuzzi R, Pfefferkorn HW, Rösler O (2006) Reavaliação da flora da Formação Poti: Diplothmema gothanica (Dolianiti) Iannuzzi. Revista Brasil Paleontologie 9:9–20

    Google Scholar 

  • Jasper A, Menegat R, Guerra-Sommer M, Cazzulo-Klepzig M, Souza PA (2006) Depositional cyclicity and paleoecological variability in an outcrop of Rio Bonito formation, Early Permian, Paraná Basin, Rio Grande do Sul, Brazil. J S Am Earth Sci 21:276–293

    Google Scholar 

  • Jasper A, Uhl D, Guerra-Sommer M, Mosbrugger V (2008) Palaeobotanical evidence of wildfires in the late Palaeozoic of South America – Early Permian, Rio Bonito formation, Paraná Basin, Rio Grande do Sul, Brazil. J S Am Earth Sci 26:435–444

    Google Scholar 

  • Laveine JP (1997) Synthetic analysis of the Neuropterids. Their interest for the decipherment of Carboniferous palaeogeography. Rev Palaeobot Palynol 95:155–189

    Google Scholar 

  • Leary RL, Pfefferkorn HW (1977) An early pennsylvanian flora with megalopteris and noeggerathiales from west Central Illinois USA. Ill State Geol Surv Circ 500:1–78

    Google Scholar 

  • Li XX, Wu XY, Shen GL, Liang XL, Zhu HC, Tong ZS, Li L (1993) The Namurian and its biota in the east sector of north Qilian Mountain. Shandong Science and Technology Press, Jinan, pp 1–482. (in Chinese with English abstract)

    Google Scholar 

  • Li XX, Shen GL, Tian BL, Wang SJ, Ouyang S (1995) Some notes on Carboniferous and Permian floras in China. In: Li XX, Zhou ZY, Cai CY, Sun G, Ouyang S, Deng LH (eds) Fossil floras of China through the geological ages. Guangdong Science and Technology Press, Guangzhou, pp 244–304

    Google Scholar 

  • Libertín M, Opluštil S, Pšenička J, Bek J, Sýkorová I, Dašková J (2009) Middle Pennsylvanian pioneer plant assemblage buried in situ by volcanic ash-fall, central Bohemia, Czech Republic. Rev Palaeobot Palynol 155:204–233

    Google Scholar 

  • Looy CV, Kerp H, Duijnstee IAP, DiMichele WA (2014) The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective. Sediment Rec 12(4):4–10

    Google Scholar 

  • Luthardt L, Rößler R (2017) Fossil forest reveals sunspot activity in the early Permian. Geology 45:279–282

    Google Scholar 

  • Luthardt L, Rößler R, Schneider JW (2016) Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz – sedimentological, geochemical and palaeobotanical evidence. Palaeogeogr Palaeoclimatol Palaeoecol 441:627–652

    Google Scholar 

  • Luthardt L, Rößler R, Schneider JW (2017) Tree-ring analysis elucidating palaeo-environmental effects captured in an in situ fossil forest – the last 80 years within an early Permian ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol 487:278–295

    Google Scholar 

  • Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U–Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. Int J Earth Sci 107:2465. https://doi.org/10.1007/s00531-018-1608-8

    Article  Google Scholar 

  • Lyell C, Dawson JW (1853) On the remains of a reptile (Dendrerpeton acadianum Wyman and Owen), and of a land shell discovered in the interior of an erect fossil tree in the coal measures of Nova Scotia. Q J Geol Soc Lond 9:58–63

    Google Scholar 

  • McLoughlin S (1993) Plant fossil distributions in some Australian Permian non-marine sediments. Sediment Geol 85:601–619

    Google Scholar 

  • McLoughlin S (2011) Glossopteris – insights into the architecture and relationships of an iconic Permian Gondwanan plant. Journal of the Botanical Society of Bengal 65:93–106

    Google Scholar 

  • McLoughlin S, Lindström S, Drinnan AN (1997) Gondwanan floristic and sedimentological trends during the Permian-Triassic transition: new evidence from the Amery Group, northern Prince Charles mountains, East Antarctica. Antarct Sci 9:281–298

    Google Scholar 

  • Melo JHG, Loboziak S (2003) Devonian–Early Carboniferous miospore biostratigraphy of the Amazon Basin, northern Brazil. Rev Palaeobot Palynol 124:131–202

    Google Scholar 

  • Milani EJ, Melo JHG, Souza PA, Fernandes LA, França AB (2007) Bacia do Paraná. Bol Geoc Petrobrás 15:265–287

    Google Scholar 

  • Milner AC (1987) The Westphalian tetrapod fauna; some aspects of its geography and ecology. J Geol Soc Lond 144:495–506

    Google Scholar 

  • Montañez IP, Tabor NJ, Niemeier D, DiMichele WA, Frank TD, Fielding CR, Isbell JL, Birgenheier LP, Rygel MC (2007) CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science 315:87–91

    Google Scholar 

  • Montañez IP, McElwain JC, Poulsen CJ, White JD, DiMichele WA, Wilson JP, Griggs G, Hren MT (2016) Climate, pCO2 and terrestrial carbon cycle linkages during Late Palaeozoic glacial-interglacial cycles. Nat Geosci 9:824–828

    Google Scholar 

  • Oliveira E (1934) Ocorrência de plantas carboníferas da flora Cosmopolita no Estado do Piauhy. Anais da Academie Brasil Ciências 6:113–118

    Google Scholar 

  • Opluštil S (2005) Evolution of the Middle Westphalian river valley drainage system in central Bohemia (Czech Republic) and it palaeogeographic implication. Palaeogeogr Palaeoclimatol Palaeoecol 222:223–258

    Google Scholar 

  • Opluštil S (2010) Contribution to knowledge on ontogenetic developmental stages of Lepidodendron mannebachense Presl, 1838. Bull Geosci 85:303–316

    Google Scholar 

  • Opluštil S, Pšenička J, Libertín M, Šimůnek Z (2007) Vegetation paterns of Westphalian and lower Stephanian mire assemblages preserved in tuff beds of the continental basins of Czech Republic. Rev Palaeobot Palynol 152:107–154

    Google Scholar 

  • Opluštil S, Pšenička J, Libertín M, Bek J, Dašková J, Šimůnek Z, Drábková J (2009) Composition and structure of an in situ Middle Pennsylvanian peat-forming plant assemblage in volcanic ash, Radnice Basin (Czech Republic). PALAIOS 24:726–746

    Google Scholar 

  • Opluštil S, Pšenička J, Bek J, Wang J, Feng Z, Libertín M, Šimůnek Z, Bureš J, Drábková J (2014) T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: a case study from the Middle Pennsylvanian of the Czech Republic. Bull Geosci 89:773–818

    Google Scholar 

  • Opluštil S, Schmitz M, Cleal CJ, Martínek K (2016) A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Global Time Scale based on new U-Pb ages. Earth-Sci Rev 154:301–335

    Google Scholar 

  • Pashin JC, Gastaldo RA (2009) Carboniferous of the black Warrior Basin. In: Greb SF, Chestnut DR Jr (eds) Carboniferous geology and biostratigraphy of the Appalachian and Black Warrior Basins. Kentucky Geological Survey, Lexington, pp 10–21. Special Publication 1, Series 12

    Google Scholar 

  • Pérez Loinaze V (2007) A Mississippian miospore biozone for southern Gondwana. Palynology 31:101–118

    Google Scholar 

  • Pfefferkorn HW, Gastaldo RA, DiMichele WA, Phillips TL (2008) Pennsylvanian tropical floras as a far-field record of changing climate. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the late Paleozoic gondwanan ice age in time and space, vol 441. Geological Society of America, Boulder, pp 305–316. Special Paper

    Google Scholar 

  • Pfefferkorn HW, Alleman V, Iannuzzi R (2014) A greenhouse interval between icehouse times: climate change, long-distance plant dispersal, and plate motion in the Mississippian (late Visean-earliest Serpukhovian) of Gondwana. Gondwana Res 25:1338–1347

    Google Scholar 

  • Phillips TL, DiMichele WA (1981) Paleoecology of Middle Pennsylvanian-age coal swamps in southern Illinois: Herrin Coal Member at the Sahara Mine No. 6. In: Niklas KJ (ed) Paleobotany, paleoecology and evolution, vol 1. Praeger Press, New York, pp 231–281

    Google Scholar 

  • Phillips TL, Peppers RA (1984) Changing patterns of Pennsylvanian coal–swamp vegetation and implications of climatic control on coal occurrence. Int J Coal Geol 3:205–255

    Google Scholar 

  • Phillips TL, Avcin MJ, Berggren D (1976) Fossil peat of the Illinois Basin. Ill State Geol Surv Educ Ser 11:1–39

    Google Scholar 

  • Phillips TL, Kunz AB, Mickish DJ (1977) Paleobotany of permineralized peat (coal balls) from the Herrin (No. 6) Coal Member of the Illinois Basin. In: Given PH, Cohen AD (eds) Interdisciplinary studies of peat and coal origins, vol 7. Geological Society of America Microform Publication, Boulder, pp 18–49

    Google Scholar 

  • Prevec R, Gastaldo RA, Neveling J, Reid SB, Looy CV (2010) An Autochthonous Glossopterid flora with Latest Permian palynomorphs and its depositional setting from the Dicynodon Assemblage Zone of the southern Karoo Basin South Africa. Palaeogeogr Palaeoclimatol Palaeoecol Palaeoecol 292:381–408

    Google Scholar 

  • Pryor J (1988) Sampling methods for quantitative analysis of coal-ball plants. Palaeogeogr Palaeoclimatol Palaeoecol 63:313–326

    Google Scholar 

  • Pšenička J, Opluštil S (2013) The epifytic plants in the fossil record and its example from in situ tuff from Pennsylvanian of Radnice Basin (Czech Republic). Bull Geosci 88:401–416

    Google Scholar 

  • Retallack GJ, Veevers JJ, Morante R (1996) Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol Soc Am Bull 108:195–207

    Google Scholar 

  • Roscher M, Schneider JW (2006) PermoCarboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geol Soc Lond Spec Publ 265:5–136

    Google Scholar 

  • Rößler R, Zierold T, Feng Z, Kretzschmar R, Merbitz M, Annacker V, Schneider JW (2012) A snapshot of an Early Permian ecosystem preserved by explosive volcanism: new results from the petrified forest of Chemnitz, Germany. PALAOIS 27:814–834

    Google Scholar 

  • Rößler R, Merbitz M, Annacker V, Luthardt L, Noll R, Neregato R, Rohn R (2014) The root systems of Permian arborescent sphenopsids: evidence from the Northern and Southern hemispheres. Palaeontographica Abt B 291:65–107

    Google Scholar 

  • Rygel MC, Sheldon EP, Stimson MR, Calder JH, Ashley KT, Salg JL (2014) The Pennsylvanian Springhill Mines Formation: Sedimentological framework of a portion of the Joggins Fossil Cliffs UNESCO World Heritage Site. Atl Geol 50:249–289

    Google Scholar 

  • Santos MECM, Carvalho MSS (2009) Paleontologia das bacias do Parnaíba, Grajaú e São Luís: reconstituições paleobiológicas. Serviço Geológico do Brasil – CPRM, Rio de Janeiro. 215 p

    Google Scholar 

  • Shi GR, Waterhouse JB, McLoughlin S (2010) The Lopingian of Australasia: a review of biostratigraphy, correlations, palaeogeography and palaeobiogeography. Geol J 45:230–263

    Google Scholar 

  • Šimůnek Z, Opluštil S, Drábková J (2009) Cordaites borassifolius (Sternberg) Unger (Cordaitales) from the Radnice Basin (Bolsovian, Czech Republic). Bull Geosci 84:301–336

    Google Scholar 

  • Slater BJ, McLoughlin S, Hilton J (2015) A high-latitude Gondwanan Lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res 27:1446–1473

    Google Scholar 

  • Spiekermann R, Uhl D, Benício JRW, Guerra-Sommer M, Jasper A (2018) A remarkable mass-assemblage of lycopsid remains from the Rio Bonito formation, lower Permian of the Paraná Basin, Rio Grande do Sul, Brazil. Palaeobiol Palaeoenviron 98:369–384

    Google Scholar 

  • Spindler F, Werneburg R, Schneider JW, Luthardt L, Annacker V, Rößler R (2018) First arboreal ‘pelycosaurs‘ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE-Germany, with a review of varanopid phylogeny. Paläontol Z 92:316–364

    Google Scholar 

  • Sterzel JT (1875) Die fossilen Pflanzen des Rothliegenden von Chemnitz in der Geschichte der Palaeontologie. Bericht der Naturwissenschaftlichen Gesellschaft zu Chemnitz 5:71–243

    Google Scholar 

  • Suárez Soruco R, Lobo Boneta J (1983) La fase compresiva Eohercínica en el sector oriental de la Cuenca Cordillerana de Bolivia. Rev Téc Yacimien Petrol Fisc Boliv 9:189–202

    Google Scholar 

  • Taylor EL, Ryberg PE (2007) Tree growth at polar latitudes based on fossil tree ring analysis. Palaeogeogr Palaeoclimatol Palaeoecol 255:246–264

    Google Scholar 

  • Waldron JWF, Rygel MC, Gibling MR, Calder JH (2013) Evaporite tectonics and the late Paleozoic stratigraphic development of the Cumberland basin, Appalachians of Atlantic Canada. Geol Soc Am Bull 125:945–960

    Google Scholar 

  • Wang J (2006) Tingia unita sp. nov. (Noeggerathiales) with strobilus from the Lower Permian of Wuda, Inner Mongolia, China. Chin Sci Bull 51:2624–2633

    Google Scholar 

  • Wang J, Pfefferkorn HW, Bek J (2009) Paratingia wudensis sp. nov., a whole noeggerathialean plant preserved in an air fall tuff of earliest Permian age (Inner Mongolia, China). Am J Bot 96:1676–1689

    Google Scholar 

  • Wang J, Pfefferkorn HW, Zhang Y, Feng Z (2012) Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proc Natl Acad Sci U S A 109:4927–4932

    Google Scholar 

  • Wang J, He XZ, Pfefferkorn HW, Wang JR (2013) Compaction rate of an early Permian volcanic tuff from Wuda coalfield, Inner Mongolia. Acta Geol Sin 87:1242–1249

    Google Scholar 

  • Wilson JP, Montañez IP, White JD, DiMichele WA, McElwain JC, Poulsen CJ, Hren MT (2017) Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytol 215:1333–1353

    Google Scholar 

  • Winston RB (1986) Characteristic features and compaction of plant tissues traced from permineralized peat to coal in Pennsylvanian coals (Desmoinesian) from the Illinois Basin. Int J Coal Geol 6:21–41

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the array of grant funding agencies that have supported their research over the decades, which has resulted in the compilation of case studies presented herein. Those agencies are, in alphabetical order: Alexander von Humboldt Stiftung, Germany; American Chemical Society, Petroleum Research Fund; Brazilian National Council for Scientific and Technological Development (CNPq); Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil; Deutsche Forschungsgemeinschaft, Bonn, Germany; Fulbright Scholars Program, USA; Grant Agency of the Czech Republic (project 16-24062S); Joggins Fossil Institute; National Research Foundation of South Africa—African Origins Platform; National Natural Science Foundation of China (Grant No.41530101); National Science Foundation of the United States of America; Nova Scotia Department of Natural Resources; The Research Support Foundation of the State of Rio Grande do Sul (FAPERGS); Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000); The Swedish Research Council (Vetenskapsrådet); The United States National Museum, Smithsonian Institution, Washington DC USA; Volkswagen Foundation, Hannover, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Gastaldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gastaldo, R.A. et al. (2020). The Coal Farms of the Late Paleozoic. In: Martinetto, E., Tschopp, E., Gastaldo, R.A. (eds) Nature through Time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-35058-1_13

Download citation

Publish with us

Policies and ethics