Skip to main content

Abstract

Lignocellulosic biomass is a complex mixture of biomacromolecules that varies significantly from one specie to the other and even throughout the same specie depending on many aspects such as geographical location, season, soil, etc. Cellulose-based material is the most abundant source of renewable carbon on earth and the increasing concerns toward reduction of GHG emissions around the globe will surely draw significantly more attention to it in the upcoming years. Non-edible biomass (also called second-generation biomass) is often divided in three categories, which are straws, softwood and hardwood. Each of these categories involves the same major macromolecules: cellulose, hemicelluloses and lignin. To a lesser extent, this biomass may also contain proteins and lipids (mostly for agricultural biomass belonging to the straw category). Finally, all contain extractives (or secondary metabolites) which amongst all constituents are the most unpredictable. Finally, the inorganic content of lignocellulosic biomass has also a major impact on its application, especially in the field of bioenergy. In this chapter, the focus will be given on providing different levels of quantification for each of these macromolecules. When, in some cases, only a general composition is sufficient, simple analysis based on gravimetric methods will be provided. However, some applications of biomass will require a deeper investigation of the different macromolecules and in that sense, more comprehensive protocols, involving state of the art analytics such as spectroscopy and chromatography will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paris, 2015: Tracking country climate pledges. In: Carbon Brief. https://www.carbonbrief.org/paris-2015-tracking-country-climate-pledges (2015). Accessed 20 January 2019

  2. Government of Canada PW and GSC Pan-Canadian framework on clean growth and climate change: En4-294/2016E-PDF—Government of Canada Publications (2002). http://publications.gc.ca/site/eng/9.828774/publication.html. Accessed 7 Mar 2018

  3. Québec (Province), Ministère du développement durable environnement et parcs (2013) Le Québec en action vert 2020: plan d’action 2013–2020 sur les changements climatiques : Phase 1. Ministère du développement durable, environnement et parcs, Québec, Que (2013)

    Google Scholar 

  4. Yung, M.M., Jablonski, W.S., MagriniBair, K.A.: Review of catalytic conditioning of biomass-derived syngas. Energy Fuels 23, 1874–1887 (2009)

    Article  CAS  Google Scholar 

  5. Spivey, J.J., Egbebi, A.: Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 36, 1514–1528 (2007)

    Article  CAS  Google Scholar 

  6. Tijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., Hardeveld, M.R.M.: Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23, 129–152 (2002)

    Article  CAS  Google Scholar 

  7. Qi, Z., Jie, C., TieJun, W., Ying, X.: Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 48, 87–92 (2007)

    Article  CAS  Google Scholar 

  8. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)

    Article  CAS  Google Scholar 

  9. Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18, 590–598 (2004)

    Article  CAS  Google Scholar 

  10. Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., Brown, R.C.: Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy 28, 386–396 (2009)

    Article  CAS  Google Scholar 

  11. Manyà, J.J.: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939–7954 (2012)

    Article  CAS  Google Scholar 

  12. Badger, P.C.: Ethanol from cellulose: a general review. Trends New Crops New Uses Proc. Fifth Natl. Symp. Atlanta. Ga. USA 10–13 November 2001, 17–21 (2002)

    Google Scholar 

  13. Holladay, J.E., White, J.F., Bozell, J.J., Johnson, D.: Top value-added chemicals from biomass-volume II—results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory PNNL16983 (2007)

    Google Scholar 

  14. Wertz, J.L.: Cellulose Science and Technology, EPFL Press (2010)

    Google Scholar 

  15. Rowell, R.: Handbook of Wood Chemistry and Wood Composites, 2nd Edn. CRC Press (2012).

    Google Scholar 

  16. Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Volume 1: fundamentals and analytical methods. In: Comprehensive Cellulose Chemistry, pp 260. Wiley, Weinheim, Germany (1998)

    Google Scholar 

  17. Plazonić, I., Barbarić-Mikočević, Ž., Džimbeg-Malčić, V.: V Chemical composition of triticale straw as a paper fiber source. WPP PA Wood, Pulp and Paper Polig. Acad. 292 (2014)

    Google Scholar 

  18. Mihranyan, A.: Cellulose from cladophorales green algae: From environmental problem to high-tech composite materials. J. Appl. Polym. Sci. 119(4), 2449–2460 (2010)

    Article  CAS  Google Scholar 

  19. Davis, T.A., Volesky, B., Mucci, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311–4330 (2003)

    Article  CAS  Google Scholar 

  20. Siddhanta, A.K., Prasad, K., Meena, R., Prasad, G., Mehta, G.K., Chhatbar, M.U., Oza, M.D., Kumar, S., Sanandiya, N.D.: Profiling of cellulose content in Indian seaweed species. Bioresour. Technol. 100, 6669–6673 (2009)

    Article  CAS  Google Scholar 

  21. Saka, S.: Structure and chemical composition of wood as a natural composite material. In: Shiraishi, N., Kajita, H., Norimoto, M. (eds.) Recent Research on Wood and Wood-Based Materials, pp. 1–20. Elsevier (1993)

    Google Scholar 

  22. Zhang, N., Li, S., Xiong, L., Hong, Y., Chen, Y.: Cellulose-hemicellulose interaction in wood secondary cell-wall. Model Simul. Mater. Sci. Eng. 23(8) (2015)

    Article  CAS  Google Scholar 

  23. Zhang, Y.-H.P.: Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 35, 367–375 (2008)

    Article  CAS  Google Scholar 

  24. Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90, 735–764 (2012)

    Article  CAS  Google Scholar 

  25. Cross, C.F., Dorée, C., Bevan, E.J.: Researches on cellulose. Longmans, Green, London, New York (1907)

    Google Scholar 

  26. Ritter, G.J.: Determination of alpha-cellulose. Ind. Eng. Chem. Anal. Ed. 1, 52–54 (1929)

    Article  CAS  Google Scholar 

  27. Sun, X.-F., Fowler, P., Baird, M.S.: Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem. 53, 860–870 (2005)

    Article  CAS  Google Scholar 

  28. Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R.H., Shimizu, T., Spener, F., van Meer, G., Wakelam, M.J.O., Denni, E.A.: Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9–S14 (2009)

    Article  CAS  Google Scholar 

  29. Timpa, J.D.: Application of universal calibration in gel permeation chromatography for molecular weight determinations of plant cell wall polymers: cotton fiber. J. Agric. Food Chem. 39, 270–275 (1991)

    Article  CAS  Google Scholar 

  30. Hon, D.N.S., Srinivasan, K.S.V.: Mechanochemical process in cotton cellulose fiber. J. Appl. Polym. Sci. 28, 1–10 (1983)

    Article  CAS  Google Scholar 

  31. Bali, G., Khunsupat, R., Akinosho, H., Payyavula, R.S., Samuel, R., Tuskan, G.A., Kalluri, U.C., Ragauskas, A.J.: Characterization of cellulose structure of populus plants modified in candidate cellulose biosynthesis genes. Biomass Bioenergy 94, 146–154 (2016)

    Article  CAS  Google Scholar 

  32. Hallac, B.B., Ragauskas, A.J.: Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod. Biorefining 5, 215–225 (2011)

    Article  CAS  Google Scholar 

  33. ASTM D 1105—Standard test method for preparation of extractive-free wood/note. https://www.boutique.afnor.org/norme/astm-d-1105/-/article/765498/us003100 (2007). Accessed 11 May 2018

  34. Silva, G.G.D., Rouau, S.G.X.: Successive centrifugal grinding and sieving of wheat straw. Powder Technol. 208, 266–270 (2011).

    Article  CAS  Google Scholar 

  35. Hubbell, C.A., Ragauskas, A.J.: Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour. Technol. 101, 7410–7415 (2010)

    Article  CAS  Google Scholar 

  36. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)

    Article  CAS  Google Scholar 

  37. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnso, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010)

    Article  CAS  Google Scholar 

  38. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K.: On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12, 563 (2005)

    Article  CAS  Google Scholar 

  39. Potthast, A., Radosta, S., Saake, B., Lebioda, S., Heinze, T., Henniges, U., Isogai, A., Koschella, A., et al.: Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22, 1591–1613 (2015)

    Article  CAS  Google Scholar 

  40. Schulze, F.: Chemical composition of vegetable cell membranes. J. Soc. Chem. Ind. 11, 2277–2287 (1891)

    Google Scholar 

  41. Scheller, H.V., Ulvskov, P.: Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).

    Article  CAS  Google Scholar 

  42. Li, Z., Qin, M., Xu, C., Chen, X.: Hot water extraction of hemicelluloses from aspen wood chips of different sizes. BioResources 8, 5690–5700 (2013).

    Google Scholar 

  43. Rissanen, J.V., Murzin, D.Y., Salmi, T., Grénman, H.: Aqueous extraction of hemicelluloses from spruce from hot to warm. Bioresour. Technol. 199, 279–282 (2016).

    Article  CAS  Google Scholar 

  44. Ebringerová, A., Hromádková, Z., Heinze, T.: Hemicellulose. In: Heinze, T. (ed.) Polysaccharides I, pp. 1–67. Springer, Berlin, Heidelberg (2005).

    Google Scholar 

  45. Izydorczyk, M.S., Biliaderis, C.G.: Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr. Polym. 28, 33–48 (1995).

    Article  CAS  Google Scholar 

  46. Nikolaevna, N., Nikolaevna, E., Viktorovna, N., Alekseevich, Y., Anatolievich, V.: Polysaccharides from larch biomass. In: Karunaratne, D.N. (ed.) The Complex World of Polysaccharides. Tech, Rijeka, Croatia (2012)

    Google Scholar 

  47. Ahlgren, P.A., Goring, D.A.I.: Removal of wood components during chlorite delignification of black spruce. Can. J. Chem. 49, 1272–1275 (1971)

    Article  CAS  Google Scholar 

  48. Shiraishi, N., Hon, D.N.S.: Wood and cellulosic chemistry, 2nd Edn. CRC Press (2000)

    Google Scholar 

  49. Pentosans in wood and pulp, Test Method T 223 cm−10. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T223.aspx. Accessed 11 May 2018

  50. Pettolino, F.A., Walsh, C., Fincher, G.B., Bacic, A.: Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7, 1590–1607 (2012).

    Article  CAS  Google Scholar 

  51. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  52. Ciucanu, I., Kerek, F.: A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131, 209–217 (1984). (Accessed May 9, 2018)

    Article  CAS  Google Scholar 

  53. Scott, R.W., Libkie, K.A., Springer, E.L.: Comparison of a gravimetric CO2 method for uronic anhydride with a colorimetric method. J. Wood Chem. Technol. 4, 497–504 (1984).

    Article  CAS  Google Scholar 

  54. Scott, R.W.: Colorimetric determination of hexuronic acids in plant materials. Anal. Chem. 51, 936–941 (1979).

    Article  CAS  Google Scholar 

  55. Willför, S., Pranovich, A., Tamminen, T., Puls, J., Laine, C., Suurnäkki, A., Saake, B., Uotila, K., Simolin, H., Hemming, J., Holmbom, B.: Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides–a comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind. Crops Prod. 29, 571–580 (2009).

    Article  CAS  Google Scholar 

  56. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) (2008).

    Google Scholar 

  57. Stevanović, T., Perrin, D.: Chimie du bois. Presses polytechniques et universitaires romandes (2009)

    Google Scholar 

  58. Dalimova, G.N., Abduazimov, K.A.: Lignins of herbaceous plants. Chem. Nat. Compd. 30, 146–159 (1994)

    Article  Google Scholar 

  59. Lupoi, J.S., Smith, E.A.: Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel raman spectroscopy. Appl. Spectrosc. 66, 903–910 (2012)

    Article  CAS  Google Scholar 

  60. Oe, E., Lindgren, B.O.: About the linkage between lignin and hemicelluloses in wood. Sven Papperstidning (1977)

    Google Scholar 

  61. Ghaffar, S.H., Fan, M.: Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 57, 264–279 (2013)

    Article  CAS  Google Scholar 

  62. Buranov, A.U., Mazza, G.: Lignin in straw of herbaceous crops. Ind. Crops Prod. 28, 237–259 (2008)

    Article  CAS  Google Scholar 

  63. Hatfield, R., Fukushima, R.S.: Can lignin be accurately measured? Crop Sci. 45, 832 (2005)

    Article  CAS  Google Scholar 

  64. Fengel, D., Wegener, G.: Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. In: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. American Chemical Society, pp. 145–158 (1979)

    Google Scholar 

  65. Schwanninger, M., Hinterstoisser, B.: Klason Lignin: Modifications to improve the precision of the standardized determination. Holzforschung 56, 161–166 (2002)

    Article  CAS  Google Scholar 

  66. Van Soest, J.P.: Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. J. Assoc. Off Agric. Chem. 46, 829–835 (1963)

    Google Scholar 

  67. Ibáñez, A.B., Bauer, S.: Downscaled method using glass microfiber filters for the determination of Klason lignin and structural carbohydrates. Biomass Bioenergy 68, 75–81 (2014)

    Article  CAS  Google Scholar 

  68. Harun, J., Labosky, P.: Chemical constituents of five Northeastern barks. Wood Fiber Sci. 17, 274–280 (2007)

    Google Scholar 

  69. Monteil-Rivera, F., Phuong, M., Mengwei, Y., Halasz, A., Hawariet, J.: Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind. Crops Prod. 41, 356–364 (2012)

    Article  CAS  Google Scholar 

  70. Lupoi, J.S., Singh, S., Parthasarathi, R., Simmons, B.A., Henry, R.J.: Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sustain. Energy Rev. 49, 871–906 (2015)

    Article  CAS  Google Scholar 

  71. Faix, O.: Fourier transform infrared spectroscopy. Methods in lignin chemistry, pp. 223–241. Springer, Berlin, Heidelberg (1992)

    Google Scholar 

  72. Schorr, D., Diouf, N., Stevanovic, T.: Comparison of physicochemical and thermal properties of esterified and non-esterified Kraft lignins for biocomposite application, pp. 309–328 (2014)

    Google Scholar 

  73. Faix, O.: Condensation indices of lignins determined by FTIR-spectroscopy. Holz Als Roh-Werkst. 49, 356–356 (1991)

    Article  Google Scholar 

  74. Goldschmid, O.: Determination of phenolic hydroxyl content of lignin preparations by ultraviolet spectrophotometry. Anal. Chem. 26, 1421–1423 (1954)

    Article  CAS  Google Scholar 

  75. Liitia, T., Tamminen, T.: Direct method for the determination of phenolic hydroxyl groups in pulp. Holzforschung 61, 623–627 (2007)

    Article  CAS  Google Scholar 

  76. Meier, D., Faix, O.: Chromatography-mass spectrometry. Methods in lignin chemistry, pp. 177–199. Springer, Berlin, Heidelberg (1992)

    Chapter  Google Scholar 

  77. Bjorkman, A.: Studies on finely divided wood part 1. Extraction of lignin with neutral solvents. Sven Papperstidn 59, 477–485 (1956)

    CAS  Google Scholar 

  78. Chiesa, S., Gnansounou, E.: Protein extraction from biomass in a bioethanol refinery—possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour. Technol. 102, 427–436 (2011)

    Article  CAS  Google Scholar 

  79. Nagy, S., Telek, L., Hall, N.T., Berry, R.E.: Potential food uses for protein from tropical and subtropical plant leaves. J. Agric. Food Chem. 26, 1016–1028 (1978)

    Article  CAS  Google Scholar 

  80. Kruse, A., Maniam, P., Spieler, F.: Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind. Eng. Chem. Res. 46, 87–96 (2007)

    Article  CAS  Google Scholar 

  81. Kjeldahl: Neue methode zur bestimmung des stickstoffs in organischen Körpern. Fresenius, Zeitschrift f. Anal. Chemie. 22, 366–382 (1883)

    Article  Google Scholar 

  82. Dumas, A: Annales de Chimie. 33, 342 (1826)

    Google Scholar 

  83. Sáez-Plaza, P., Navas, M.J., Wybraniec, S., Michalowski, T., Garcia Asuero, A.: An overview of the kjeldahl method of nitrogen determination. Part II sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 43, 224–272 (2013)

    Article  CAS  Google Scholar 

  84. AOAC International AOAC: Official Methods of Analysis (Volume 1) (1990)

    Google Scholar 

  85. Carter, M.R., Gregorich, E.G.: Soil sampling and methods of analysis. CRC Press, Canadian Society of Soil Science (2007)

    Google Scholar 

  86. Prusisz, B., Jaśkiewicz, L., Pohl, P.: High-performance ion chromatography assessment of inorganic and organic nitro-gen fractions in potatoes. Microchim. Acta 156, 219–223 (2006)

    Article  CAS  Google Scholar 

  87. Merrill, A.L.: Energy value of foods: basis and derivation, Washington: human nutrition research branch, agricultural research service. U. S. Department of Agriculture (1955)

    Google Scholar 

  88. Chen, X., Zhao, G., Zhang, Y., Han, L., Xiao, W.: Nitrogen-to-protein conversion factors for crop residues and animal manure common in China. J. Agric. Food Chem. 65, 9186–9190 (2017)

    Article  CAS  Google Scholar 

  89. Hames, B., Scarlata, C., Sluiter, A.: Determination of protein content in biomass. Natl Renew Energy Lab 1–5 (2008)

    Google Scholar 

  90. Mosse, J.: Nitrogen-to-protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. J. Agric. Food Chem. 38, 18–24 (1990)

    Article  CAS  Google Scholar 

  91. Bloor, W.R.: Outline of a classification of the lipoids. Exp Biol Med 17, 138–140 (1920)

    Article  CAS  Google Scholar 

  92. Lipid Analysis—4th Edn. https://www.elsevier.com/books/lipid-analysis/christie/978-0-9552512-4-5. Accessed 29 Apr 2018

  93. Kochhar, P.: Lipid biochemistry. An introduction (5th Edn.). Int. J. Food Sci. Technol. 37, 899–900 (2002)

    Google Scholar 

  94. Thiex, N.J., Anderseon, S., Gildemeister, B.: Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Ran-dall/Soxtec/Submersion method): Collaborative Study, 11 (2002)

    Google Scholar 

  95. Ma, F., Hanna, M.A.: Biodiesel production: a review 1. J. Ser. #12109. Agricultural research division, institute of agriculture and natural resources, university of Nebraska–Lincoln 1. Bioresour. Technol. 70, 1–15 (1999)

    Google Scholar 

  96. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  CAS  Google Scholar 

  97. Van Wychen, S., Ramirez, K., Laurens, L.M.L.: Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification: laboratory analytical procedure (LAP) (2016)

    Google Scholar 

  98. Lepage, G., Roy, C.C.: Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 27, 114–120 (1986)

    CAS  Google Scholar 

  99. Laurens, L.M.L., Quinn, M., Van Wychen, S., Templeton, D.W., Wolfrum, E.J.: Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal. Bioanal. Chem. 403, 167–178 (2012)

    Article  CAS  Google Scholar 

  100. Dutta, P.C., Appelqvist, L.-A.: The effects of different cultural conditions on the accumulation of depot lipids noly petroselinic acid during somatic embryogenesis in Daucus carota L. Plant Sci. 64, 167–177 (1989)

    Article  CAS  Google Scholar 

  101. Nichols, B.W.: Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. Biochim. Biophys. Acta. BBA—Spec. Sect. Lipids Relat. Subj. 70, 417–422 (1963)

    CAS  Google Scholar 

  102. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

    Article  CAS  Google Scholar 

  103. Folch, J., Lees, M., Stanley, G.H.S.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    CAS  Google Scholar 

  104. Iverson, S.J., Lang, S.L., Cooper, M.H.: Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36, 1283–1287 (2001)

    Article  CAS  Google Scholar 

  105. Sheng, J., Vannela, R., Rittmann, B.E.: Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour. Technol. 102, 1697–1703 (2011)

    Article  CAS  Google Scholar 

  106. Jodin, P.: Association pour la recherche sur le bois en Lorraine Le Bois: matériau d’ingénierie. Arbolor, Nancy (1994)

    Google Scholar 

  107. Kūka, M., Čakste, I., Geršebeka, E.: Determination of bio-active compounds and mineral substances in latvian birch and maple saps. Proc. Latv. Acad. Sci. Sect. B Nat. Exact. Appl. Sci. 67 (2013)

    Article  CAS  Google Scholar 

  108. Coppen, J.J.W.: Gums, resins and latexes of plant origin. Food and Agriculture Organization of the United Nations (1995)

    Google Scholar 

  109. Pizzi, A.: Wood adhesives. Taylor and Francis (1983)

    Google Scholar 

  110. Argyropoulos, D.S.: Wood and cellulosic chemistry. 2nd Edn. J. Am. Chem. Soc. 123, 8880–8881 (2001)

    Article  CAS  Google Scholar 

  111. Thammasouk, K., Tandjo, D., Penner, M.H.: Influence of extractives on the analysis of herbaceous biomass. J. Agric. Food Chem. 45, 437–443 (1997)

    Article  CAS  Google Scholar 

  112. Kuchelmeister, C., Bauer, S.: Rapid small-scale determination of extractives in biomass. BioEnergy Res. 8, 68–76 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Ghislain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghislain, T., Duret, X., Diouf, P.N., Lavoie, JM. (2020). Lignocellulosic Biomass. In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_3

Download citation

Publish with us

Policies and ethics