Skip to main content

Branching Processes: A Personal Historical Perspective

  • Chapter
  • First Online:
Statistical Modeling for Biological Systems

Abstract

This article is a slightly edited and updated version of an evening talk during the random trees week at the Mathematisches Forschungsinstitut Oberwolfach, January 2009. It gives a—personally biased—sketch of the development of branching processes, from the mid nineteenth century to 2010, emphasizing relations to bioscience and demography, and to society and culture in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athreya, K. B., & Ney, P. E. (1972). Branching processes. Berlin: Springer.

    Book  Google Scholar 

  2. Bienaymé, I. J. (1845). De la loi de multiplication et de la durée des familles. Socit philomathique de Paris Extraits, 5, 37–39.

    Google Scholar 

  3. Bru, B., Jongmans, F., & Seneta, E. (1992). I.J. Bienaymé: Family information and proof of the criticality theorem. International Statistical Review, 60, 177–183.

    Article  Google Scholar 

  4. Bühler, W. J. (1971). Generations and degree of relationship in supercritical Markov branching processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 18, 141–152.

    Article  MathSciNet  Google Scholar 

  5. Bühler, W. J. (1972). The distribution of generations and other aspects of the family structure of branching processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Probability Theory (pp. 463–480). Berkeley: University of California Press.

    Google Scholar 

  6. Champagnat, N. (2006). A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stochastic Processes and their Applications, 116, 1127–1160.

    Article  MathSciNet  Google Scholar 

  7. Champagnat, N., Ferrière, R., & Méléard, S. (2006). Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models. Theoretical Population Biology, 69, 297–321.

    Article  Google Scholar 

  8. Champagnat, N., Ferrière, R., & Méléard, S. (2008). Individual-based probabilistic models of adaptive evolution and various scaling approximations. In Seminar on stochastic analysis, random fields and applications V. Progress in probability (Vol. 59, pp. 75–113). Basel: Springer.

    Google Scholar 

  9. Champagnat, N., & Lambert, A. (2007). Evolution of discrete populations and the canonical diffusion of adaptive dynamics. The Annals of Applied Probability, 17, 102–155.

    Article  MathSciNet  Google Scholar 

  10. Cournot, A. A. (1847). De l’origine et des limites de la correspondence entre l’algèbre at la géométrie. Paris: Hachette.

    Google Scholar 

  11. Crump, K. S., & Mode, C. J. (1968). A general age-dependent branching process I. Journal of Mathematical Analysis and Applications, 24, 494–508.

    Article  MathSciNet  Google Scholar 

  12. Crump, K. S., & Mode, C. J. (1969). A general age-dependent branching process II. Journal of Mathematical Analysis and Applications, 25, 8–17.

    Article  MathSciNet  Google Scholar 

  13. Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354–357.

    Article  Google Scholar 

  14. Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: A derivation from stochastic ecological processes. Journal of Mathematical Biology, 34, 579–612.

    Article  MathSciNet  Google Scholar 

  15. Euler, L. (1767). Recherches génerales sur la mortalité et la multiplication du genre humain. Memoires de l’academie des sciences de Berlin, 16, 144–164.

    Google Scholar 

  16. Fahlbeck, P. E. (1898). Sveriges adel: statistisk undersökning öfver de å Riddarhuset introducerade ätterna (The Swedish nobility, a statistical investigation of the families of the house of nobility) (Vols. 1–2). Lund: C. W. K. Gleerup.

    Google Scholar 

  17. Haccou, P., Jagers, P., & Vatutin, V. A. (2005). Branching processes: Variation, growth, and extinction of populations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Harris, T. E. (1963). The Theory of Branching Processes. Berlin: Springer. Reprinted by Courier Dover Publications, 1989.

    Google Scholar 

  19. Heyde, C. C., & Seneta, E. (1977). I.J. Bienaymé: Statistical theory anticipated. New York: Springer.

    Book  Google Scholar 

  20. Iosifescu, M., Limnios, N., & Oprisan, G. (2007). Modèles stochastiques. Paris: Hermes Lavoisier.

    MATH  Google Scholar 

  21. Jagers, P. (1969). A general stochastic model for population development. Scandinavian Actuarial Journal, 1969, 84–103.

    Article  MathSciNet  Google Scholar 

  22. Jagers, P. (1975). Branching processes with biological applications. London: Wiley.

    MATH  Google Scholar 

  23. Jagers, P. (1982). How probable is it to be firstborn? and other branching process applications to kinship problems. Mathematical Biosciences, 59, 1–15.

    Article  MathSciNet  Google Scholar 

  24. Jagers, P. (1989). General branching processes as Markov fields. Stochastic Processes and their Applications, 32, 183–212.

    Article  MathSciNet  Google Scholar 

  25. Jagers, P. (2011). Extinction, persistence, and evolution. In F. A. Chalub & J. F. Rodrigues (Eds.) The mathematics of Darwin’s legacy (pp. 91–104). Basel: Springer.

    Chapter  Google Scholar 

  26. Jagers, P., & Klebaner, F. C. (2011). Population-size-dependent, age-structured branching processes linger around. Journal of Applied Probability, 48, 249–260.

    Article  Google Scholar 

  27. Jagers, P., Klebaner, F. C., & Sagitov, S. (2007). On the path to extinction. Proceedings of the National Academy of Sciences of the United States of America, 104, 6107–6111.

    Google Scholar 

  28. Jagers, P., & Nerman, O. (1996). The asymptotic composition of supercritical, multi-type branching populations. In Séminaire de Probabilités XXX (pp. 40–54). Berlin: Springer.

    Chapter  Google Scholar 

  29. Jagers, P., & Sagitov, S. (2008). General branching processes in discrete time as random trees. Bernoulli, 14, 949–962.

    Article  MathSciNet  Google Scholar 

  30. Joffe, A., & Waugh, W. A. O. (1982). Exact distributions of kin numbers in a Galton-Watson process. Journal of Applied Probability, 19, 767–775.

    Article  MathSciNet  Google Scholar 

  31. Kendall, D. G. (1948). On the generalized “birth-and-death” process. Annals of Mathematical Statistics, 19, 1–15.

    Article  MathSciNet  Google Scholar 

  32. Kersting, G. (1992). Asymptotic Gamma distributions for stochastic difference equations. Stochastic Processes and their Applications, 40, 15–28.

    Article  MathSciNet  Google Scholar 

  33. Klebaner, F. C., Sagitov, S., Vatutin, V. A., Haccou, P., & Jagers, P. (2011). Stochasticity in the adaptive dynamics of evolution: The bare bones. Journal of Biological Dynamics, 5, 147–162.

    Article  MathSciNet  Google Scholar 

  34. Lotka, A. J. (1934). Théorie analytique des associations biologiques (Vol. 1). Paris: Hermann.

    MATH  Google Scholar 

  35. Lotka, A. J. (1939). Théorie analytique des associations biologiques (Vol. 2). Paris: Hermann.

    MATH  Google Scholar 

  36. Méléard, S., & Tran, C. V. (2009). Trait substitution sequence process and canonical equation for age-structured populations. Journal of Mathematical Biology, 58, 881–921.

    Article  MathSciNet  Google Scholar 

  37. Metz, J. A., Geritz, S. A., Meszéna, G., Jacobs, F. J., & Van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (Vol. 45, pp. 183–231). Amsterdam: North-Holland.

    MATH  Google Scholar 

  38. Mode, C. J. (1971). Multitype branching processes: Theory and applications. New York: Elsevier.

    MATH  Google Scholar 

  39. Nerman, O., & Jagers, P. (1984). The stable doubly infinite pedigree process of supercritical branching populations. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65, 445–460.

    Article  MathSciNet  Google Scholar 

  40. Neveu, J. (1986). Arbres et processus de Galton-Watson. Annales de l’Institut Henri Poincaré Probabilités et Statistiques, 2, 199–207.

    MathSciNet  MATH  Google Scholar 

  41. Sevastyanov, B. A. (1971). Vetvyashchiesya Protsessy (Branching processes). Moscow: Nauka.

    Google Scholar 

  42. Steffensen, J. F. (1930). Om Sandssynligheden for at Afkommet uddør. Matematisk Tidsskrift B, 19–23.

    Google Scholar 

  43. Watson, H. W., & Galton, F. (1875). On the probability of the extinction of families. Journal of the Anthropological Institute of Great Britain and Ireland, 4, 138–144.

    Article  Google Scholar 

  44. Yakovlev, A. Y., & Yanev, N. M. (1989). Transient processes in cell proliferation kinetics. Lecture notes in biomathematics (Vol. 82). Berlin: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jagers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagers, P. (2020). Branching Processes: A Personal Historical Perspective. In: Almudevar, A., Oakes, D., Hall, J. (eds) Statistical Modeling for Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-34675-1_18

Download citation

Publish with us

Policies and ethics