Skip to main content
Book cover

Heparanase pp 669–684Cite as

Impact of Heparanse on Organ Fibrosis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Organ fibrosis is defined as a deregulated wound-healing process characterized by a progressive accumulation of fibrous tissue and by reduced remodeling that can lead to the loss of functionality of the affected organ. This pathological process is quite common in several parenchymal organs such as kidneys, liver, and lungs and represents a real health emergency in developed western countries since a real anti-fibrotic therapy is not yet available in most cases. Heparanase (HPSE), which is the enzyme that cuts off the side chains of heparan sulfate (HS) proteoglycan, appears to be involved in the aetiopathogenesis of fibrosis in all these organs, even if with different mechanisms. Here we discuss how the interplay between HPSE and components of the immune and inflammatory responses can activate recruitment, proliferation, and activation of myofibroblasts which represent the main cell type responsible for the deposition of fibrous matrix. Finally, bearing in mind that once the activity of HPSE is inhibited no other molecule is able to perform the same function, it is desirable that this enzyme could prove to be a suitable pharmacological target in anti-fibrotic therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rockey, D. C., Bell, P. D., & Hill, J. A. (2015, July 2). Fibrosis-a common pathway to organ injury and failure. The New England Journal of Medicine, 373(1), 96.

    Article  PubMed  CAS  Google Scholar 

  2. Jun, J. I., & Lau, L. F. (2018, January 2). Resolution of organ fibrosis. The Journal of Clinical Investigation, 128(1), 97–107.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wynn, T. A., & Ramalingam, T. R. (2012, July 6). Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nature Medicine, 18(7), 1028–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levine, D., Rockey, D. C., Milner, T. A., Breuss, J. M., Fallon, J. T., & Schnapp, L. M. (2000, June). Expression of the integrin alpha8beta1 during pulmonary and hepatic fibrosis. The American Journal of Pathology, 156(6), 1927–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henderson, N. C., Arnold, T. D., Katamura, Y., Giacomini, M. M., Rodriguez, J. D., McCarty, J. H., Pellicoro, A., Raschperger, E., Betsholtz, C., Ruminski, P. G., Griggs, D. W., Prinsen, M. J., Maher, J. J., Iredale, J. P., Lacy-Hulbert, A., Adams, R. H., & Sheppard, D. (2013, December). Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nature Medicine, 19(12), 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  6. Giannandrea, M., & Parks, W. C. (2014, Febuary). Diverse functions of matrix metalloproteinases during fibrosis. Disease Models & Mechanisms, 7(2), 193–203.

    Article  CAS  Google Scholar 

  7. Masola, V., Bellin, G., Gambaro, G., & Onisto, M. (2018, November 28). Heparanase: A multitasking protein involved in extracellular matrix (ECM) remodeling and intracellular events. Cell, 7(12).

    Google Scholar 

  8. Liu, Y. (2011, October 18). Cellular and molecular mechanisms of renal fibrosis. Nature Reviews. Nephrology, 7(12), 684–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allinovi, M., De Chiara, L., Angelotti, M. L., Becherucci, F., & Romagnani, P. (2018, August). Anti-fibrotic treatments: A review of clinical evidence. Matrix Biology, 68-69, 333–354.

    Article  CAS  PubMed  Google Scholar 

  10. Masola, V., Zaza, G., Onisto, M., Lupo, A., & Gambaro, G. (2015, June 4). Impact of heparanase on renal fibrosis. Journal of Translational Medicine, 13, 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hewitson, T. D. (2009, June). Renal tubulointerstitial fibrosis: Common but never simple. American Journal of Physiology. Renal Physiology, 296(6), F1239–F1244.

    Article  CAS  PubMed  Google Scholar 

  12. Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O’Callaghan, C. A., Lasserson, D. S., & Hobbs, F. D. (2016, July 6). Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One, 11(7), e0158765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., & Hsu, C. Y. (2004, September 23). Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. The New England Journal of Medicine, 351(13), 1296–1305.

    Article  CAS  PubMed  Google Scholar 

  14. Skampardoni, S., Poulikakos, D., Malik, M., Green, D., & Kalra, P. A. (2019, July). The potential of electrocardiography for cardiac risk prediction in chronic and end-stage kidney disease. Nephrology, Dialysis, Transplantation, 34(7), 1089–1098.

    Google Scholar 

  15. Tampe, D., & Zeisberg, M. (2014, April). Potential approaches to reverse or repair renal fibrosis. Nature Reviews. Nephrology, 10(4), 226–237.

    Article  CAS  PubMed  Google Scholar 

  16. Collins, A. J., Foley, R. N., Chavers, B., Gilbertson, D., Herzog, C., Ishani, A., Johansen, K., Kasiske, B. L., Kutner, N., Liu, J., St Peter, W., Guo, H., Hu, Y., Kats, A., Li, S., Li, S., Maloney, J., Roberts, T., Skeans, M., Snyder, J., Solid, C., Thompson, B., Weinhandl, E., Xiong, H., Yusuf, A., Zaun, D., Arko, C., Chen, S. C., Daniels, F., Ebben, J., Frazier, E., Johnson, R., Sheets, D., Wang, X., Forrest, B., Berrini, D., Constantini, E., Everson, S., Eggers, P., & Agodoa, L. (2014, January). US Renal Data System 2013 Annual Data Report. American Journal of Kidney Diseases, 63(1 Suppl), A7.

    Article  PubMed  Google Scholar 

  17. François, H., & Chatziantoniou, C. (2018,August). Renal fibrosis: Recent translational aspects. Matrix Biology, 68-69, 318–332.

    Article  PubMed  CAS  Google Scholar 

  18. Zhuang, Q., Ma, R., Yin, Y., Lan, T., Yu, M., & Ming, Y. (2019,January 13). Mesenchymal stem cells in renal fibrosis: The flame of Cytotherapy. Stem Cells International, 2019, 8387350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Van den Hoven, M. J., Rops, A. L., Vlodavsky, I., Levidiotis, V., Berden, J. H., & van der Vlag, J. (2007, September). Heparanase in glomerular diseases. Kidney International, 72(5), 543–548.

    Article  PubMed  CAS  Google Scholar 

  20. Kramer, A., van den Hoven, M., Rops, A., Wijnhoven, T., van den Heuvel, L., Lensen, J., van Kuppevelt, T., van Goor, H., van der Vlag, J., Navis, G., & Berden, J. H. (2006, September). Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. Journal of the American Society of Nephrology, 17(9), 2513–2520.

    Article  CAS  PubMed  Google Scholar 

  21. Garsen, M., Rops, A. L., Rabelink, T. J., Berden, J. H., & van der Vlag, J. (2014, January). The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrology, Dialysis, Transplantation, 29(1), 49–55.

    Article  CAS  PubMed  Google Scholar 

  22. Gewin, L. S. (2018, August). Renal fibrosis: Primacy of the proximal tubule. Matrix Biology, 68-69, 248–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vreys, V., & David, G. (2007, May-June). Mammalian heparanase: What is the message? Journal of Cellular and Molecular Medicine, 11(3), 427–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun, S., Ning, X., Zhai, Y., Du, R., Lu, Y., He, L., Li, R., Wu, W., Sun, W., & Wang, H. (2014, June). Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway. American Journal of Nephrology, 39(5), 436–448.

    Google Scholar 

  25. Ho, L. C., Sung, J. M., Shen, Y. T., Jheng, H. F., Chen, S. H., Tsai, P. J., & Tsai, Y. S. (2016, August). Egr-1 deficiency protects from renal inflammation and fibrosis. Journal of Molecular Medicine (Berlin, Germany), 94(8), 933–942.

    Article  CAS  Google Scholar 

  26. Kim, K. H., Park, J. H., Lee, W. R., Park, J. S., Kim, H. C., & Park, K. K. (2013, May). The inhibitory effect of chimeric decoy oligodeoxynucleotide against NF-κB and Sp1 in renal interstitial fibrosis. Journal of Molecular Medicine (Berlin, Germany), 91(5), 573–586.

    Article  CAS  Google Scholar 

  27. Secchi, M. F., Crescenzi, M., Masola, V., Russo, F. P., Floreani, A., & Onisto, M. (2017, November 2). Heparanase and macrophage interplay in the onset of liver fibrosis. Scientific Reports, 7(1), 14956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lerner, I., Hermano, E., Zcharia, E., Rodkin, D., Bulvik, R., Doviner, V., Rubinstein, A. M., Ishai-Michaeli, R., Atzmon, R., Sherman, Y., Meirovitz, A., Peretz, T., Vlodavsky, I., & Elkin, M. (2011, May). Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. The Journal of Clinical Investigation, 121(5), 1709–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, G., Wang, D., Vikramadithyan, R., Yagyu, H., Saxena, U., Pillarisetti, S., & Goldberg, I. J. (2004, May 4). Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry, 43(17), 4971–4977.

    Article  CAS  PubMed  Google Scholar 

  30. Edovitsky, E., Lerner, I., Zcharia, E., Peretz, T., Vlodavsky, I., & Elkin, M. (2006, May 1). Role of endothelial heparanase in delayed-type hypersensitivity. Blood, 107(9), 3609–3616.

    Google Scholar 

  31. Van den Hoven, M. J., Waanders, F., Rops, A. L., Kramer, A. B., van Goor, H., Berden, J. H., Navis, G., & van der Vlag, J. (2009, September). Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrology, Dialysis, Transplantation, 24(9), 2637–2645.

    Article  PubMed  CAS  Google Scholar 

  32. Morimoto, Y., Gai, Z., Tanishima, H., Kawakatsu, M., Itoh, S., Hatamura, I., & Muragaki, Y. (2008, December). TNF-alpha deficiency accelerates renal tubular interstitial fibrosis in the late stage of ureteral obstruction. Experimental and Molecular Pathology, 85(3), 207–213.

    Article  CAS  PubMed  Google Scholar 

  33. Lv, W., Booz, G. W., Fan, F., Wang, Y., & Roman, R. J. (2018, February 16). Oxidative stress and renal fibrosis: Recent insights for the development of novel therapeutic strategies. Frontiers in Physiology, 9, 105.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lv, W., Booz, G. W., Wang, Y., Fan, F., & Roman, R. J. (2018, February 5). Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. European Journal of Pharmacology, 820, 65–76.

    Article  CAS  PubMed  Google Scholar 

  35. Maxhimer, J. B., Somenek, M., Rao, G., Pesce, C. E., Baldwin, D. Jr, Gattuso, P., Schwartz, M. M., Lewis, E. J., Prinz, R. A., & Xu, X. (2005, July). Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells: A potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes, 54(7), 2172–2178.

    Google Scholar 

  36. Han, J., Woytowich, A. E., Mandal, A. K., & Hiebert, L. M. (2007, July). Heparanase upregulation in high glucose-treated endothelial cells is prevented by insulin and heparin. Experimental Biology and Medicine (Maywood, N.J.), 232(7), 927–934.

    CAS  Google Scholar 

  37. Masola, V., Gambaro, G., Tibaldi, E., Onisto, M., Abaterusso, C., & Lupo, A. (2011, August). Regulation of heparanase by albumin and advanced glycation end products in proximal tubular cells. Biochimica et Biophysica Acta, 1813(8), 1475–1482.

    Article  CAS  PubMed  Google Scholar 

  38. Gekle, M. (2005, March). Renal tubule albumin transport. Annual Review of Physiology, 67, 573–594.

    Google Scholar 

  39. Qin, Q., Niu, J., Wang, Z., Xu, W., Qiao, Z., & Gu, Y. (2013, February 26). Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway. Cardiovascular Diabetology, 12, 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. An, X. F., Zhou, L., Jiang, P. J., Yan, M., Huang, Y. J., Zhang, S. N., Niu, Y. F., Ten, S. C., & Yu, J. Y. (2011, August). Advanced glycation end-products induce heparanase expression in endothelial cells by the receptor for advanced glycation end products and through activation of the FOXO4 transcription factor. Molecular and Cellular Biochemistry, 354(1–2), 47–55.

    Article  CAS  PubMed  Google Scholar 

  41. Masola, V., Zaza, G., Secchi, M. F., Gambaro, G., Lupo, A., & Onisto, M. (2014, September). Heparanase is a key player in renal fibrosis by regulating TGF-β expression and activity. Biochimica et Biophysica Acta, 1843(9), 2122–2128.

    Article  CAS  PubMed  Google Scholar 

  42. Masola, V., Gambaro, G., Tibaldi, E., Brunati, A. M., Gastaldello, A., D’Angelo, A., Onisto, M., & Lupo, A. (2012, January 6). Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. The Journal of Biological Chemistry, 287(2), 1478–1488.

    Article  CAS  PubMed  Google Scholar 

  43. Secchi, M. F., Masola, V., Zaza, G., Lupo, A., Gambaro, G., & Onisto, M. (2015, December). Recent data concerning heparanase: Focus on fibrosis, inflammation and cancer. Biomolecular Concepts, 6(5–6), 415–421.

    CAS  PubMed  Google Scholar 

  44. Lovisa, S., Zeisberg, M., & Kalluri, R. (2016, October). Partial epithelial-to-Mesenchymal transition and other new mechanisms of kidney fibrosis. Trends in Endocrinology and Metabolism, 27(10), 681–695.

    Article  CAS  PubMed  Google Scholar 

  45. Boor, P., & Floege, J. (2011, July). Chronic kidney disease growth factors in renal fibrosis. Clinical and Experimental Pharmacology & Physiology, 38(7), 441–450.

    Article  CAS  Google Scholar 

  46. Liu, Y. (2010, February). New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology, 21(2), 212–222.

    Article  CAS  PubMed  Google Scholar 

  47. Masola, V., Onisto, M., Zaza, G., Lupo, A., & Gambaro, G. (2012, October 24). A new mechanism of action of sulodexide in diabetic nephropathy: Inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition. Journal of Translational Medicine, 10, 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, X., Li, X., Zhang, Q., & Zhao, T. (2017, December). Low molecular weight fucoidan and its fractions inhibit renal epithelial mesenchymal transition induced by TGF-β1 or FGF-2. International Journal of Biological Macromolecules, 105(Pt 2), 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  49. Gil, N., Goldberg, R., Neuman, T., Garsen, M., Zcharia, E., Rubinstein, A. M., van Kuppevelt, T., Meirovitz, A., Pisano, C., Li, J. P., van der Vlag, J., Vlodavsky, I., & Elkin, M. (2012, January). Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes, 61(1), 208–216.

    Article  CAS  PubMed  Google Scholar 

  50. Eltzschig, H. K., & Eckle, T. (2011, November 7). Ischemia and reperfusion-from mechanism to translation. Nature Medicine, 17, 1391–1401.

    Google Scholar 

  51. Menke, J., Sollinger, D., Schamberger, B., Heemann, U., & Lutz, J. (2014, August). The effect of ischemia/reperfusion on the kidney graft. Current Opinion in Organ Transplantation, 19, 395–400.

    Google Scholar 

  52. Hotchkiss, R. S., Strasser, A., McDunn, J. E., & Swanson, P. E. (2009, October). Cell death. The New England Journal of Medicine, 361, 1570–1583.

    Google Scholar 

  53. Kono, H., & Rock, K. L. (2008, April). How dying cells alert the immune system to danger. Nature Reviews. Immunology, 8, 279–289.

    Google Scholar 

  54. Ponticelli, C. (2014, June). Ischaemia-reperfusion injury: A major protagonist in kidney transplantation. Nephrology, Dialysis, Transplantation, 29, 1134–1140.

    Google Scholar 

  55. Nankivell, B. J., Borrows, R. J., Fung, C. L., O’Connell, P. J., Allen, R. D., & Chapman, J. R. (2003, December). The natural history of chronic allograft nephropathy. The New England Journal of Medicine, 349, 2326–2333.

    Google Scholar 

  56. Zell, S., Schmitt, R., Witting, S., Kreipe, H. H., Hussein, K., & Becker, J. U. (2013, June). Hypoxia induces Mesenchymal gene expression in renal tubular epithelial cells: An in vitro model of kidney transplant fibrosis. Nephron Extra, 3(1), 50–58.

    Google Scholar 

  57. Bonventre, J. V., & Zuk, A. (2004, August). Ischemic acute renal failure: An inflammatory disease? Kidney International, 66, 480–485.

    Google Scholar 

  58. Yang, L., Humphreys, B. D., & Bonventre, J. V. (2011). Pathophysiology of acute kidney injury to chronic kidney disease: Maladaptive repair. Contributions to Nephrology, 174, 149–155.

    Google Scholar 

  59. Wynn, T. A. (2007, March). Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. The Journal of Clinical Investigation, 117, 524–529.

    Google Scholar 

  60. Masola, V., Zaza, G., Gambaro, G., Onisto, M., Bellin, G., Vischini, G., Khamaysi, I., Hassan, A., Hamoud, S., Nativ, O., Heyman, S. N., Lupo, A., Vlodavsky, I., & Abassi, Z. (2016,July 28). Heparanase: A potential new factor involved in the renal epithelial Mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury. PLoS One, 11(7), e0160074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zaza, G., Masola, V., Granata, S., Bellin, G., Dalla Gassa, A., Onisto, M., Gambaro, G., & Lupo, A. (2015, August). Sulodexide alone or in combination with low doses of everolimus inhibits the hypoxia-mediated epithelial to mesenchymal transition in human renal proximal tubular. Journal of Nephrology, 28(4), 431–440.

    Google Scholar 

  62. Abassi, Z., Hamoud, S., Hassan, A., Khamaysi, I., Nativ, O., Heyman, S. N., Muhammad, R. S., Ilan, N., Singh, P., Hammond, E., Zaza, G., Lupo, A., Onisto, M., Bellin, G., Masola, V., Vlodavsky, I., & Gambaro, G. (2017, May 23). Involvement of heparanase in the pathogenesis of acute kidney injury: Nephroprotective effect of PG545. Oncotarget, 8(21), 34191–34204.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao, H., Perez, J. S., Lu, K., George, A. J., & Ma, D. (2014, April 15). Role of toll-like receptor-4 in renal graft ischemia–reperfusion injury. American Journal of Physiology. Renal Physiology, 306(8), F801–F811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, G. Y., & Nuñez, G. (2010, December). Sterile inflammation: Sensing and reacting to damage. Nature Reviews. Immunology, 10(12), 826–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wolfs, T. G., Buurman, W. A., van Schadewijk, A., de Vries, B., Daemen, M. A., Hiemstra, P. S., & van ’t Veer, C. (2002, February 1). In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. Journal of Immunology, 168(3), 1286–1293.

    Article  CAS  Google Scholar 

  66. Anders, H. J., & Ryu, M. (2011, Nov). Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney International, 80(9), 915–925.

    Article  CAS  PubMed  Google Scholar 

  67. Galli, S. J., Borregaard, N., & Wynn, T. A. (2011, October 19). Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nature Immunology, 12(11), 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, G., Ma, H., Qiu, L., Li, L., Cao, Y., Ma, J., & Zhao, Y. (2011, January). Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunology and Cell Biology, 89(1), 130–142.

    Article  CAS  PubMed  Google Scholar 

  69. Lee, S., Huen, S., Nishio, H., Nishio, S., Lee, H. K., Choi, B. S., Ruhrberg, C., & Cantley, L. G. (2011, February). Distinct macrophage phenotypes contribute to kidney injury and repair. Journal of the American Society of Nephrology, 22(2), 317–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Masola, V., Zaza, G., Bellin, G., Dall’Olmo, L., Granata, S., Vischini, G., Secchi, M. F., Lupo, A., Gambaro, G., & Onisto, M. (2018, February). Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury. The FASEB Journal, 32(2), 742–756.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, H., Alam, A., Soo, A. P., George, A. J. T., & Ma, D. (2018, February). Ischemia-reperfusion injury reduces long-term renal graft survival: Mechanism and beyond. eBioMedicine, 28, 31–42.

    Google Scholar 

  72. Norman, J. T. (2006, September). Protecting the microvasculature: A tight connection to ameliorating chronic kidney disease? Journal of the American Society of Nephrology, 17, 2353–2355.

    Google Scholar 

  73. El-Zoghby, Z. M., Stegall, M. D., Lager, D. J., Kremers, W. K., Amer, H., Gloor, J. M., & Cosio, F. G. (2009, March). Identifying specific causes of kidney allograft loss. American Journal of Transplantation, 9, 527–535.

    Google Scholar 

  74. Masola, V., Bellin, G., Vischini, G., Dall’Olmo, L., Granata, S., Gambaro, G., Lupo, A., Onisto, M., & Zaza, G. (2018, November 16). Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury. Oncotarget, 9(90), 36185–36201.

    Google Scholar 

  75. Li, J., Meng, X., Hu, J., Zhang, Y., Dang, Y., Wei, L., & Shi, M. (2017, February). Heparanase promotes radiation resistance of cervical cancer by upregulating hypoxia inducible factor 1. American Journal of Cancer Research, 7, 234–244.

    Google Scholar 

  76. Tam, P. (2009, February). Peritoneal dialysis and preservation of residual renal function. Peritoneal Dialysis International, 29(Suppl 2), S108–S110.

    Google Scholar 

  77. Theofilou, P. (2011, May). Quality of life in patients undergoing hemodialysis or perito-neal dialysis treatment. Journal of Clinical Medical Research, 3, 132–138.

    Google Scholar 

  78. Krediet, R.T. (2018, December). Ultrafiltration failure is a reflection of peritoneal alterations in patients treated with peritoneal dialysis. Frontiers in Physiology, 9,1815.

    Google Scholar 

  79. Strippoli, R., Moreno-Vicente, R., Battistelli, C., Cicchini, C., Noce, V., Amicone, L., Marchetti, A., Del Pozo, M. A., & Tripodi, M. (2016). Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells International, 2016, 3543678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chan, T. M., & Yung, S. (2007, June). Studying the effects of new peritoneal dialysis solutionson the peritoneum. Peritoneal Dialysis International, 27(Suppl 2), S87–S93.

    Google Scholar 

  81. Williams, J. D., Craig, K. J., Topley, N., Von Ruhland, C., Fallon, M., Newman, G. R., Mackenzie, R. K. & Williams, G. T. (2002, February). Peritoneal biopsy study Group.Morphologic changes in the peritoneal membrane of patients with renal dis-ease. Journal of the American Society of Nephrology, 13, 470–479.

    Google Scholar 

  82. Williams, J. D., Craig, K. J., von Ruhland, C., Topley, N., & Williams, G. T. (2003, December). Biopsy registry study group. The natural course of peritoneal membrane biology during peritoneal dialy-sis. Kidney International. Supplement, 64, S43–S49.

    Google Scholar 

  83. Yáñez-Mó, M., Lara-Pezzi, E., Selgas, R., Ramírez-Huesca, M., Domínguez-Jiménez, C., Jiménez-Heffernan, J. A., Aguilera, A., Sánchez-Tomero, J. A., Bajo, M. A., Alvarez, V., Castro, M. A., del Peso, G., Cirujeda, A., Gamallo, C., Sánchez-Madrid, F., & López-Cabrera, M. (2003, January 30). Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. The New England Journal of Medicine, 348(5), 403–413.

    Article  PubMed  Google Scholar 

  84. Masola, V., Granata, S., Bellin, G., Gambaro, G., Onisto, M., Rugiu, C., Lupo, A., & Zaza, G. (2017, July 1). Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrology, Dialysis, Transplantation, 32(7), 1145–1154.

    CAS  PubMed  Google Scholar 

  85. Pellicoro, A., Ramachandran, P., Iredale, J. P., & Fallowfield, J. A. (2014, March). Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nature Reviews. Immunology, 14(3), 181–194.

    Google Scholar 

  86. Elpek, G. O. (2014, June). Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World Journal of Gastroenterology, 20(23), 7260–7276.

    Google Scholar 

  87. Friedman, S. L. (2008, January). Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 88(1), 125–172.

    Google Scholar 

  88. Puche, J. E., Saiman, Y., & Friedman, S. L. (2013, October). Hepatic stellate cells and liver fibrosis. Comprehensive Physiology, 3(4), 1473–1492.

    Google Scholar 

  89. Xie, G., & Diehl, A. M. (2013, December). Evidence for and against epithelial-to-mesenchymal transition in the liver. American Journal of Physiology. Gastrointestinal and Liver Physiology, 305(12), G881–G890.

    Google Scholar 

  90. Xiao, Y., Kleeff, J., Shi, X., Büchler, M. W., & Friess, H. (2003, July). Heparanase expression in hepatocellular carcinoma and the cirrhotic liver. Hepatology Research, 26(3), 192–198.

    Google Scholar 

  91. El-Assal, O. N., Yamanoi, A., Ono, T., Kohno, H., & Nagasue, N. (2001, May). The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clinical Cancer Research, 7(5), 1299–1305.

    Google Scholar 

  92. Goldshmidt, O., Yeikilis, R., Mawasi, N., Paizi, M., Gan, N., Ilan, N., Pappo, O., Vlodavsky, I., & Spira, G. (2004, May). Heparanase expression during normal liver development and following partial hepatectomy. The Journal of Pathology, 203(1), 594–602.

    Google Scholar 

  93. Ohayon, O., Mawasi, N., Pevzner, A., Tryvitz, A., Gildor, T., Pines, M., Rojkind, M., Paizi, M., & Spira, G. (2008, June). Halofuginone upregulates the expression of heparanase in thioacetamide-induced liver fibrosis in rats. Laboratory Investigation, 88(6), 627–633.

    Google Scholar 

  94. Secchi, M. F., Crescenzi, M., Masola, V., Russo, F. P., Floreani, A., & Onisto, M. (2017, November). Heparanase and macrophage interplay in the onset of liver fibrosis. Scientific Reports, 7(1), 14956.

    Google Scholar 

  95. Sakai, N., & Tager, A. M. (2013, July). Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochimica et Biophysica Acta, 1832(7), 911–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. He, L., Sun, F., Wang, Y., Zhu, J., Fang, J., Zhang, S., Yu, Q., Gong, Q., Ren, B., Xiang, X., Chen, Z., Ning, Q., Hu, J., Yang, P., & Wang, C. Y. (2016, May). HMGB1 exacerbates bronchiolitis obliterans syndrome via RAGE/NF-κB/HPSE signaling to enhance latent TGF-β release from ECM. American Journal of Translational Research, 8(5), 1971–1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Onisto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masola, V., Gambaro, G., Onisto, M. (2020). Impact of Heparanse on Organ Fibrosis. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_27

Download citation

Publish with us

Policies and ethics