Skip to main content

Factorization and Normalization, Essentially

  • Conference paper
  • First Online:
Book cover Programming Languages and Systems (APLAS 2019)

Abstract

\(\lambda \)-calculi come with no fixed evaluation strategy. Different strategies may then be considered, and it is important that they satisfy some abstract rewriting property, such as factorization or normalization theorems. In this paper we provide simple proof techniques for these theorems. Our starting point is a revisitation of Takahashi’s technique to prove factorization for head reduction. Our technique is both simpler and more powerful, as it works in cases where Takahashi’s does not. We then pair factorization with two other abstract properties, defining essential systems, and show that normalization follows. Concretely, we apply the technique to four case studies, two classic ones, head and the leftmost-outermost reductions, and two less classic ones, non-deterministic weak call-by-value and least-level reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terminology at work in the literature on \(\lambda \)-calculus and the rewriting terminology often clash: the former calls parallel \(\beta \) reduction what the latter calls multi-step \(\beta \) reduction—parallel reduction in rewriting is something else.

  2. 2.

    It can be obtained indirectly, as a corollary of standardization, proved by Takahashi [28] using the concrete structure of terms. Thus the proof is not of an abstract nature.

  3. 3.

    In rewriting theory, a full reduction for \(\rightarrow _{}\) is called a reduction strategy for \(\rightarrow _{}\). We prefer not to use the term strategy because it has different meaning in the \(\lambda \)-calculus, where it is a deterministic, not necessarily full, reduction for \(\rightarrow _{}\).

  4. 4.

    The difference between factorization and its terminal case is relevant for normalization: van Oostrom and Toyama [22, footnote 8] give an example of normalizing full reduction for a rewriting system in which factorization fails but terminal factorization holds.

  5. 5.

    \(t\) has a head normal form” is the usual formulation for “\(t\rightarrow _{\beta }^* s\) for some \(s\) that is head normal”. We prefer the latter to avoid the ambiguity of the former about the reduction leading from \(t\) to one of its head normal forms (\(\rightarrow _{\beta }^*\) or \(\rightarrow _{h}^*\)?).

  6. 6.

    Namely, if \(s_1 \; _{\beta }{\Leftarrow }\ t\Rightarrow _{\beta }s_2\) then there exists \(u\) such that \(s_1 \Rightarrow _{\beta }u\; _{\beta }{\Leftarrow }\ s_2\).

References

  1. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: 23rd International Conference on Rewriting Techniques and Applications, RTA 2012. LIPIcs, vol. 15, pp. 6–21 (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.6

  2. Accattoli, B., Dal Lago, U.: (Leftmost-Outermost) Beta-reduction is invariant, indeed. Logical Methods Comput. Sci. 12(1) (2016). https://doi.org/10.2168/LMCS-12(1:4)2016

  3. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essentially (extended version). CoRR abs/1902.05945 (2019). http://arxiv.org/abs/1908.11289

  4. Barendregt, H.P.: The Lambda Calculus - Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  5. Bonelli, E., Kesner, D., Lombardi, C., Ríos, A.: On abstract normalisation beyond neededness. Theor. Comput. Sci. 672, 36–63 (2017). https://doi.org/10.1016/j.tcs.2017.01.025

    Article  MathSciNet  MATH  Google Scholar 

  6. de Carvalho, D., Pagani, M., de Falco, L.T.: A semantic measure of the execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011). https://doi.org/10.1016/j.tcs.2010.12.017

    Article  MathSciNet  MATH  Google Scholar 

  7. Crary, K.: A simple proof of call-by-value standardization. Technical report, CMU-CS-09-137, Carnegie Mellon University (2009)

    Google Scholar 

  8. Guerrieri, G.: Head reduction and normalization in a call-by-value lambda-calculus. In: 2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation, WPTE 2015. OASICS, vol. 46, pp. 3–17 (2015). https://doi.org/10.4230/OASIcs.WPTE.2015.3

  9. Guerrieri, G., Paolini, L., Ronchi Della Rocca, S.: Standardization of a Call-By-Value Lambda-Calculus. In: 13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015. LIPIcs, vol. 38, pp. 211–225 (2015). https://doi.org/10.4230/LIPIcs.TLCA.2015.211

  10. Guerrieri, G., Paolini, L., Ronchi Della Rocca, S.: Standardization and conservativity of a refined call-by-value lambda-calculus. Logical Methods Comput. Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:29)2017

  11. Hindley, J.: The Church-Rosser property and a result in combinatory logic. Ph.D. thesis, University of Newcastle-upon-Tyne (1964)

    Google Scholar 

  12. Hirokawa, N., Middeldorp, A., Moser, G.: Leftmost outermost revisited. In: 26th International Conference on Rewriting Techniques and Applications, RTA 2015. LIPIcs, vol. 36, pp. 209–222 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.209

  13. Ishii, K.: A proof of the leftmost reduction theorem for \(\lambda \)\(\beta \)\(\eta \)-calculus. Theor. Comput. Sci. 747, 26–32 (2018). https://doi.org/10.1016/j.tcs.2018.06.003

    Article  MathSciNet  MATH  Google Scholar 

  14. Kesner, D., Lombardi, C., Ríos, A.: A standardisation proof for algebraic pattern calculi. In: 5th International Workshop on Higher-Order Rewriting, HOR 2010. EPTCS, vol. 49, pp. 58–72 (2010). https://doi.org/10.4204/EPTCS.49.5

    Article  Google Scholar 

  15. Klop, J.W.: Combinatory reduction systems. Ph.D. thesis, Utrecht University (1980)

    Google Scholar 

  16. Krivine, J.: Lambda-Calculus. Ellis Horwood Series in Computers and Their Applications. Masson, Types and Models. Ellis Horwood (1993)

    MATH  Google Scholar 

  17. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J. Autom. Reasoning 23(3–4), 373–409 (1999). https://doi.org/10.1007/BFb0026981

    Article  MathSciNet  MATH  Google Scholar 

  18. Melliès, P.-A.: A factorisation theorem in rewriting theory. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 49–68. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0026981

    Chapter  MATH  Google Scholar 

  19. Mitschke, G.: The standardization theorem for \(\lambda \)-calculus. Math. Logic Q. 25(1–2), 29–31 (1979). https://doi.org/10.1002/malq.19790250104

    Article  MathSciNet  MATH  Google Scholar 

  20. Newman, M.: On theories with a combinatorial definition of “Equivalence”. Ann. Math. 43(2), 223–243 (1942)

    Article  MathSciNet  Google Scholar 

  21. Oostrom, V.: Random descent. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 314–328. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9_24

    Chapter  Google Scholar 

  22. van Oostrom, V., Toyama, Y.: Normalisation by random descent. In: 1st International Conference on Formal Structures for Computation and Deduction, FSCD 2016. LIPIcs, vol. 52, pp. 32:1–32:18 (2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.32

  23. Pagani, M., Tranquilli, P.: Parallel reduction in resource lambda-calculus. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 226–242. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10672-9_17

    Chapter  Google Scholar 

  24. Pagani, M., Tranquilli, P.: The conservation theorem for differential nets. Math. Struct. Comput. Sci. 27(6), 939–992 (2017). https://doi.org/10.1017/S0960129515000456

    Article  MathSciNet  MATH  Google Scholar 

  25. Paolini, L., Ronchi Della Rocca, S.: Parametric parameter passing lambda-calculus. Inf. Comput. 189(1), 87–106 (2004). https://doi.org/10.1016/j.ic.2003.08.003

    Article  MATH  Google Scholar 

  26. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci. 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

    Article  MathSciNet  Google Scholar 

  27. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda Calculus - A Metamodel for Computation. TTCS. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-10394-4

    Book  MATH  Google Scholar 

  28. Takahashi, M.: Parallel reductions in \(\lambda \)-calculus. Inf. Comput. 118(1), 120–127 (1995). https://doi.org/10.1006/inco.1995.1057

    Article  MathSciNet  MATH  Google Scholar 

  29. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  30. Terui, K.: Light affine lambda calculus and polynomial time strong normalization. Arch. Math. Log. 46(3–4), 253–280 (2007). https://doi.org/10.1007/s00153-007-0042-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1 “Typed Lambda-Calculi with Sharing and Unsharing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Guerrieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Accattoli, B., Faggian, C., Guerrieri, G. (2019). Factorization and Normalization, Essentially. In: Lin, A. (eds) Programming Languages and Systems. APLAS 2019. Lecture Notes in Computer Science(), vol 11893. Springer, Cham. https://doi.org/10.1007/978-3-030-34175-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34175-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34174-9

  • Online ISBN: 978-3-030-34175-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics