Skip to main content

Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1219))

Abstract

The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.

The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.

The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.

This chapter will present the “Pharaonic” intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adeva-Andany MM et al (2019) Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 46:73–90

    Article  PubMed  Google Scholar 

  • Afonso J et al (2019) Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma – MCT1 as potential target in diffuse large B cell lymphoma. Cell Oncol 42:303–318

    Article  Google Scholar 

  • Aiderus A et al (2018) Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers. BMC Cancer 18:805–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Alem LF et al (2013) Activation of the PKC pathway stimulates ovarian cancer cell proliferation, migration, and expression of MMP7 and MMP10. Biol Reprod 89:73–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam MM et al (2016) A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors. Clin Transl Med 5:3–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Alix-Panabières C et al (2017) Molecular portrait of metastasis-competent circulating tumor cells in colon cancer reveals the crucial role of genes regulating Energy metabolism and DNA repair. Clin Chem 63:700–713

    Article  PubMed  Google Scholar 

  • Allen E et al (2016) Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep 15:1144–1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Altman BJ et al (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Amelio I et al (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39:191–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Amrita Devi K et al (2015) ATP Citrate Lyase (ACLY): a promising target for cancer prevention and treatment. Curr Drug Targets 16:156–163

    Article  Google Scholar 

  • Anastasiou D et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen S et al (2015) Organized metabolic crime in prostate cancer: the coexpression of MCT1 in tumor and MCT4 in stroma is an independent prognosticator for biochemical failure. Urol Oncol Semin Orig Investig 33:338.e339–338.e317

    Google Scholar 

  • Anderson CM, Stahl A (2013) SLC27 fatty acid transport proteins. Mol Asp Med 34:516–528

    Article  Google Scholar 

  • Ando M et al (2010) Interleukin 6 enhances Glycolysis through expression of the Glycolytic enzymes Hexokinase 2 and 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase-3. J Nippon Med Sch 77:97–105

    Article  PubMed  Google Scholar 

  • Asukai K et al (2017) Micro-RNA-130a-3p regulates Gemcitabine resistance via PPARG in Cholangiocarcinoma. Ann Surg Oncol 24:2344–2352

    Article  PubMed  Google Scholar 

  • Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)—hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res 104083

    Google Scholar 

  • Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Azar S et al (2018) Cellular and molecular characterization of IDH1-mutated diffuse low grade gliomas reveals tumor heterogeneity and absence of EGFR/PDGFRα activation. Glia 66:239–255

    Article  PubMed  Google Scholar 

  • Baek G et al (2014) MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep 9:2233–2249

    Article  PubMed  Google Scholar 

  • Balaban S et al (2017) Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballatori N et al (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckner ME et al (2010) Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer 126:2282–2295

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 8:e79167–e79167

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhutia YD, Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta 1863:2531–2539

    Article  PubMed  Google Scholar 

  • Bianchi MG et al (2012) Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells. Neuroscience 227:260–270

    Article  PubMed  Google Scholar 

  • Bianchi MG et al (2014) Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell Mol Life Sci 71:2001–2015

    Article  PubMed  Google Scholar 

  • Biancur DE et al (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 8:15965–15965

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidkhori G et al (2018) Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci U S A 115:E11874–E11883

    Article  PubMed  PubMed Central  Google Scholar 

  • Boidot R et al (2012) Regulation of Monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72:939–948

    Article  PubMed  Google Scholar 

  • Bolzoni M et al (2016) Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood 128:667–679

    Article  PubMed  Google Scholar 

  • Bonito CA et al (2016) Insights into medium-chain Acyl-CoA dehydrogenase structure by molecular dynamics simulations. Chem Biol Drug Des 88:281–292

    Article  PubMed  Google Scholar 

  • Bothwell PJ et al (2018) Targeted suppression and knockout of ASCT2 or LAT1 in epithelial and mesenchymal human liver cancer cells fail to inhibit growth. Int J Mol Sci 19:2093

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourbeau MP, Bartberger MD (2015) Recent advances in the development of Acetyl-CoA Carboxylase (ACC) inhibitors for the treatment of Metabolic disease. J Med Chem 58:525–536

    Article  PubMed  Google Scholar 

  • Bräutigam K et al (2011) Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines. J Cancer Res Clin Oncol 137:875–886

    Article  PubMed  Google Scholar 

  • Bröer A et al (2018) Disruption of amino acid homeostasis by novel ASCT2 inhibitors involves multiple targets. Front Pharmacol 9:785–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Bröer A et al (2019) Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells. J Biol Chem 294:4012–4026

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruntz RC et al (2019) Inhibition of anaplerotic glutaminolysis underlies selenite toxicity in human lung cancer. Proteomics 0:1800486

    Article  Google Scholar 

  • Bryant KL et al (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrera R et al (2011) The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem 286:5774–5783

    Article  PubMed  Google Scholar 

  • Calvert AE et al (2017) Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep 19:1858–1873

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao A et al (2010) Long chain acyl-CoA synthetase-3 is a molecular target for peroxisome proliferator-activated receptor delta in HepG2 hepatoma cells. J Biol Chem 285:16664–16674

    Article  PubMed  PubMed Central  Google Scholar 

  • Carduner L et al (2014) Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res 320:329–342

    Article  PubMed  Google Scholar 

  • Carneiro L, Pellerin L (2015) Monocarboxylate transporters: new players in body weight regulation. Obes Rev 16:55–66

    Article  PubMed  Google Scholar 

  • Carr EL et al (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185:1037–1044

    Article  PubMed  Google Scholar 

  • Carracedo A et al (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13:227–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrer A, Wellen KE (2015) Metabolism and epigenetics: a link cancer cells exploit. Curr Opin Biotechnol 34:23–29

    Article  PubMed  Google Scholar 

  • Carrer A et al (2017) Impact of a high-fat diet on tissue Acyl-CoA and histone acetylation levels. J Biol Chem 292:3312–3322

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrer A et al (2019) Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov 9:416–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter JC, Church FC (2012) Mature breast adipocytes promote breast cancer cell motility. Exp Mol Pathol 92:312–317

    Article  PubMed  Google Scholar 

  • Catalina-Rodriguez O et al (2012) The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 3:1220–1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang C-I et al (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61:1100–1106

    PubMed  Google Scholar 

  • Chen L, Cui H (2015) Targeting glutamine induces apoptosis: a cancer therapy approach. Int J Mol Sci 16:22830–22855

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K et al (2014) Integrative metabolome and transcriptome profiling reveals discordant glycolysis process between osteosarcoma and normal osteoblastic cells. J Cancer Res Clin Oncol 140:1715–1721

    Article  PubMed  Google Scholar 

  • Chen J et al (2019a) SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Hum Cell 32:193–201

    Article  PubMed  Google Scholar 

  • Chen F et al (2019b) Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol 21:498–510

    Article  PubMed  Google Scholar 

  • Cho H et al (2013) Overexpression of glucose transporter-1 (GLUT-1) predicts poor prognosis in epithelial ovarian cancer. Cancer Investig 31:607–615

    Article  Google Scholar 

  • Choi J et al (2015) Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol Ther 16:1205–1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffelt SB et al (2009) Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochimica et Biophysica Acta (BBA) – Rev Cancer 1796:11–18

    Article  Google Scholar 

  • Colla R et al (2016) Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 7:70715–70737

    Article  PubMed  PubMed Central  Google Scholar 

  • Combs JA, De Nicola GM (2019) The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel) 11:678

    Article  PubMed  Google Scholar 

  • Corbet C, Feron O (2017) Cancer cell metabolism and mitochondria: nutrient plasticity for TCA cycle fueling. Biochimica et Biophysica Acta (BBA) – Rev Cancer 1868:7–15

    Article  Google Scholar 

  • Corbet C et al (2016) Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 24:311–323

    Article  PubMed  Google Scholar 

  • Cui H et al (2007) Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 67:3345–3355

    Article  PubMed  Google Scholar 

  • Currie E et al (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Curry JM et al (2013) Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle (Georgetown Tex) 12:1371–1384

    Article  PubMed  Google Scholar 

  • D’Esposito V et al (2012) Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia 55:2811–2822

    Article  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104:19345–19350

    Article  PubMed  PubMed Central  Google Scholar 

  • DeClerck YA (2012) Desmoplasia: a response or a Niche? Cancer Discov 2:772–774

    Article  PubMed  Google Scholar 

  • Dijkgraaf EM et al (2013) Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res 73:2480–2492

    Article  PubMed  Google Scholar 

  • Ding W et al (2010) Platelet-derived growth factor (PDGF)–PDGF receptor interaction activates bone marrow–derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood 116:2984–2993

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirat B et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to Breast cancer invasion. Cancer Res 71:2455–2465

    Article  PubMed  Google Scholar 

  • Do SK et al (2019) Glucose transporter 3 gene variant is associated with survival outcome of patients with non-small cell lung cancer after surgical resection. Gene 703:58–64

    Article  PubMed  Google Scholar 

  • Dodo M et al (2018) Lactate dehydrogenase C is required for the protein expression of a sperm-specific isoform of lactate dehydrogenase A. J Biochem 165:323–334

    Article  Google Scholar 

  • Doherty JR et al (2014) Blocking lactate export by inhibiting the myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res 74:908–920

    Article  PubMed  Google Scholar 

  • Dornier E et al (2017) Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat Commun 8:2255–2255

    Article  PubMed  PubMed Central  Google Scholar 

  • Doxsee DW et al (2007) Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy. Prostate 67:162–171

    Article  PubMed  Google Scholar 

  • Drayton RM et al (2014) Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 20:1990–2000

    Article  PubMed  PubMed Central  Google Scholar 

  • Drew BG et al (2015) Estrogen receptor (ER)α-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression. J Biol Chem 290:5566–5581

    Article  PubMed  Google Scholar 

  • Du Q et al (2019) PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation. Cancer Sci 110:2050–2062

    Article  PubMed  PubMed Central  Google Scholar 

  • Ducker GS et al (2017) Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 114:11404–11409

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufour E et al (2012) Pancreatic tumor sensitivity to plasma L-Asparagine starvation. Pancreas 41:940–948

    Article  PubMed  Google Scholar 

  • Echevarría-Vargas IM et al (2014) Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One 9:e97094–e97094

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhanati S et al (2013) Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 4:905–912

    Article  PubMed  Google Scholar 

  • Emmanuel C et al (2014) Genomic classification of serous ovarian cancer with adjacent borderline differentiates RAS pathway and TP53-mutant tumors and identifies NRAS as an oncogenic driver. Clin Cancer Res 20:6618–6630

    Google Scholar 

  • Enciu A-M et al (2018) Targeting CD36 as biomarker for metastasis prognostic: how far from translation into clinical practice? Biomed Res Int 2018:7801202–7801202

    Article  PubMed  PubMed Central  Google Scholar 

  • Eng CH et al (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3:ra31–ra31

    Article  PubMed  Google Scholar 

  • Fazzari J et al (2015) Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain. Sci Rep 5:8380–8380

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng M et al (2018) LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. J Exp Clin Cancer Res 37:274–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes LM et al (2018) Malic enzyme 1 (ME1) is pro-oncogenic in Apc(Min/+) mice. Sci Rep 8:14268–14268

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiaschi T et al (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140

    Article  PubMed  Google Scholar 

  • Fisher RM, Gertow K (2005) Fatty acid transport proteins and insulin resistance. Curr Opin Lipidol 16:173–178

    Article  PubMed  Google Scholar 

  • Frey IM et al (2007) Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue of Pept2−/− mice. Physiol Genomics 28:301–310

    Article  PubMed  Google Scholar 

  • Fu M et al (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A 109:2943–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii S et al (2019) Persulfide synthases that are functionally coupled with translation mediate sulfur respiration in mammalian cells. Br J Pharmacol 176:607–615

    Article  PubMed  Google Scholar 

  • Fujino M et al (2016) Expression of glucose transporter-1 is correlated with hypoxia-inducible factor 1α and malignant potential in pancreatic neuroendocrine tumors. Oncol Lett 12:3337–3343

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujisaki K et al (2015) Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 150:255–263

    Article  PubMed  Google Scholar 

  • Fujiwara N et al (2018) CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut 67:1493–1504

    Article  PubMed  Google Scholar 

  • Fukuda S et al (2015) Pyruvate Kinase M2 modulates esophageal squamous cell carcinoma chemotherapy response by regulating the pentose phosphate pathway. Ann Surg Oncol 22:1461–1468

    Article  Google Scholar 

  • Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Gai J-W et al (2016) Expression profile of hydrogen sulfide and its synthases correlates with tumor stage and grade in urothelial cell carcinoma of bladder. Urol Oncol Semin Orig Investig 34:166.e115–166.e120

    Google Scholar 

  • Galan-Cobo A et al (2019) LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in <em>KRAS</em>-mutant lung adenocarcinoma. Cancer Res 79:3251–3267

    Article  PubMed  PubMed Central  Google Scholar 

  • Gào X, Schöttker B (2017) Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 8:51888–51906

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2017) TNFα-YAP/p65-HK2 axis mediates breast cancer cell migration. Oncogene 6:e383–e383

    Article  Google Scholar 

  • Gillies RJ, Gatenby RA (2015) Metabolism and its sequelae in cancer evolution and therapy. Cancer J 21:88–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Giuffrè A, Vicente JB (2018) Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxidative Med Cell Longev 2018:6290931–6290931

    Article  Google Scholar 

  • Giuliani N et al (2017) The potential of inhibiting glutamine uptake as a therapeutic target for multiple myeloma. Expert Opin Ther Targets 21:231–234

    Article  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  Google Scholar 

  • Grasmann G et al (2019) Gluconeogenesis in cancer cells – repurposing of a starvation-induced metabolic pathway? Biochimica et Biophysica Acta (BBA) – Rev Cancer 1872:24–36

    Article  Google Scholar 

  • Gregory MA et al (2019) Targeting glutamine metabolism and Redox state for Leukemia therapy. Clin Cancer Res 25:4079–4090

    Article  PubMed  PubMed Central  Google Scholar 

  • Grisouard J et al (2011) Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation. Diabetol Metab Syndr 3:16–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Y et al (2017) mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT. Mol Cell 67:128–138.e127

    Article  PubMed  PubMed Central  Google Scholar 

  • Guaita-Esteruelas S et al (2017) Adipose-derived fatty acid-binding proteins plasma concentrations are increased in Breast cancer patients. Oncologist 22:1309–1315

    Article  PubMed  PubMed Central  Google Scholar 

  • Gui DY et al (2013) Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Science Signal 6:pe7–pe7

    Article  Google Scholar 

  • Guido C et al (2012) Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 3:798–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Guppy M et al (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364:309–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurrapu S et al (2015) Monocarboxylate transporter 1 inhibitors as potential anticancer agents. ACS Med Chem Lett 6:558–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Habib E et al (2015) Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol 5:33–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajiahmadi S et al (2015) Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol 93:321–329

    Article  PubMed  Google Scholar 

  • Halestrap AP (2013) The SLC16 gene family – structure, role and regulation in health and disease. Mol Asp Med 34:337–349

    Article  Google Scholar 

  • Hamann I et al (2018) Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer—effects of hypoxia. FASEB J 32:5104–5118

    Article  PubMed  Google Scholar 

  • Hanai J-I et al (2012) Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol 227:1709–1720

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris IS et al (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222

    Article  PubMed  Google Scholar 

  • Hausheer FH et al (2011) Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of human aminopeptidase N. Cancer Chemother Pharmacol 67:381–391

    Article  PubMed  Google Scholar 

  • Hensley CT et al (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Juárez J et al (2019) Sodium-coupled monocarboxylate transporter is a target of epigenetic repression in cervical cancer. Int J Oncol 54:1613–1624

    PubMed  PubMed Central  Google Scholar 

  • Hlouschek J et al (2018) The mitochondrial citrate carrier (SLC25A1) sustains redox homeostasis and mitochondrial metabolism supporting radioresistance of cancer cells with tolerance to cycling severe hypoxia. Front Oncol 8:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong X et al (2014) PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut 63:1635–1647

    Article  PubMed  Google Scholar 

  • Hong SM et al (2019) Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis. J Biol Chem 294:7810–7820

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopperton KE et al (2014) Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res 320:302–310

    Article  PubMed  Google Scholar 

  • Hou Z et al (2011) Macrophages induce COX-2 expression in breast cancer cells: role of IL-1β autoamplification. Carcinogenesis 32:695–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua TNM et al (2019) Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPARγ activation exerting cancer growth suppression. EBioMedicine 41:134–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D et al (2014) HIF-1-mediated suppression of Acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 8:1930–1942

    Article  PubMed  Google Scholar 

  • Hung YP, Yellen G (2014) Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor. Methods Mol Biol 1071:83–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung YP et al (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang RF et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68:918–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Iershov A et al (2019) The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nat Commun 10:1566–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Infantino V et al (2014) A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim Biophys Acta 1839:1217–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Israelsen WJ et al (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409

    Article  PubMed  Google Scholar 

  • Iwamoto M et al (2014) Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J Nucl Med 55:2038–2044

    Article  PubMed  Google Scholar 

  • Iwasaki K et al (2015) Role of hypoxia-inducible factor-1α, carbonic anhydrase-IX, glucose transporter-1 and vascular endothelial growth factor associated with lymph node metastasis and recurrence in patients with locally advanced cervical cancer. Oncol Lett 10:1970–1978

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji X et al (2018) xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 37:5007–5019

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia D et al (2019) Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci 116:3909–3918

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L et al (2017) Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein. Metab Eng 43:198–207

    Article  PubMed  Google Scholar 

  • Jiang J et al (2018) Asparagine, a critical limiting metabolite during glutamine starvation. Mol Cell Oncol 5:e1441633–e1441633

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin L, Zhou Y (2019) Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 17:4213–4221

    PubMed  PubMed Central  Google Scholar 

  • José MM et al (2019) Metabolic reprogramming of cancer by chemicals that target glutaminase isoenzymes. Curr Med Chem 26:1–23

    Google Scholar 

  • Kalinina EV et al (2014) Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochem Biokhimiia 79:1562–1583

    Article  Google Scholar 

  • Kang ES et al (2017) xCT deficiency aggravates acetaminophen-induced hepatotoxicity under inhibition of the transsulfuration pathway. Free Radic Res 51:80–90

    Article  PubMed  Google Scholar 

  • Karagiannis GS et al (2012) Cancer-associated fibroblasts drive the progression of metastasis through both Paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10:1403–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YH et al (2013) Factors Affecting 18F-FDG uptake by metastatic lymph nodes in gastric cancer. J Comput Assist Tomogr 37:815–819

    Article  PubMed  Google Scholar 

  • Kim YH et al (2017) SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma. Oncotarget 8:68381–68392

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitisin K et al (2011) Presentation and outcomes of hepatocellular carcinoma patients at a Western centre. HPB (Oxford) 13:712–722

    Article  PubMed  Google Scholar 

  • Kleszcz R et al (2018) The inhibition of c-MYC transcription factor modulates the expression of glycolytic and glutaminolytic enzymes in FaDu hypopharyngeal carcinoma cells. Adv Clin Exp Med Off Organ Wroclaw Med Univ 27:735–742

    Article  Google Scholar 

  • Knudsen ES et al (2016) Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget 7:78396–78411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko Y-H et al (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Cancer Biol Ther 12:1085–1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh KX et al (2017) Acquired resistance to PI3K/mTOR inhibition is associated with mitochondrial DNA mutation and glycolysis. Oncotarget 8:110133–110144

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolukula VK et al (2014) SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker. Oncotarget 5:1212–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong L et al (2016) Expression of lactate dehydrogenase C in MDAMB231 cells and its role in tumor invasion and migration. Mol Med Rep 13:3533–3538

    Article  PubMed  Google Scholar 

  • Koochekpour S et al (2012) Serum glutamate levels correlate with Gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells. Clin Cancer Res 18:5888–5901

    Article  PubMed  PubMed Central  Google Scholar 

  • Koppula P et al (2017) The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem 292:14240–14249

    Article  PubMed  PubMed Central  Google Scholar 

  • Koprivica I et al (2019) Ethyl pyruvate stimulates regulatory T cells and ameliorates type 1 diabetes development in mice. Front Immunol 9:3130–3130

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalik MA et al (2016) Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget 7:32375–32393

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo T-C et al (2016) Glutaminase 2 stabilizes dicer to repress snail and metastasis in hepatocellular carcinoma cells. Cancer Lett 383:282–294

    Article  PubMed  Google Scholar 

  • Lally JSV et al (2019) Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab 29:174–182.e175

    Article  PubMed  Google Scholar 

  • Lao-On U et al (2018) Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection. J Mol Med 96:237–247

    Article  PubMed  Google Scholar 

  • Le A et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H-W et al (2013) Recruitment of monocytes/macrophages in different tumor microenvironments. Biochimica et Biophysica Acta (BBA) – Rev Cancer 1835:170–179

    Article  Google Scholar 

  • Lee J-H et al (2017) Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 8:949–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemire J et al (2008) Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One 3:e1550–e1550

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Le A (2018) Glutamine metabolism in cancer. In: Le A (ed) The heterogeneity of cancer metabolism. Springer, Cham, pp 13–32

    Chapter  Google Scholar 

  • Li H et al (2015) Cancer-associated fibroblasts provide a suitable microenvironment for tumor development and progression in oral tongue squamous cancer. J Transl Med 13:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S et al (2016) Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene 35:642–650

    Article  PubMed  Google Scholar 

  • Li S et al (2018a) Acidic pHe regulates cytoskeletal dynamics through conformational integrin β1 activation and promotes membrane protrusion. Biochim Biophys Acta (BBA) – Mol Basis Dis 1864:2395–2408

    Article  Google Scholar 

  • Li Q et al (2018b) HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways. J Exp Clin Cancer Res 37:231–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L et al (2019a) High developmental pluripotency-associated 4 expression promotes cell proliferation and glycolysis, and predicts poor prognosis in non-small-cell lung cancer. Mol Med Rep 20:445–454

    PubMed  PubMed Central  Google Scholar 

  • Li J et al (2019b) miR-145 inhibits glutamine metabolism through c-myc/GLS1 pathways in ovarian cancer cells. Cell Biol Int 43:921–930

    Article  PubMed  Google Scholar 

  • Li B et al (2019c) Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine 39:239–254

    Article  PubMed  Google Scholar 

  • Liang Y et al (2018) CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogene 7:98–98

    Article  Google Scholar 

  • Lien EC et al (2016) Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nat Cell Biol 18:572–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Lien EC et al (2017) Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci Signal 10:eaao6604

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim JKM et al (2019) Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A 116:9433–9442

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin M-H, Miner JH (2015) Fatty acid transport protein 1 can compensate for fatty acid transport protein 4 in the developing mouse epidermis. J Invest Dermatol 135:462–470

    Article  PubMed  Google Scholar 

  • Lin EY et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin R et al (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin M et al (2018) Downregulation of CPT2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma. Onco Targets Ther 11:3101–3110

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R-Z et al (2011) Association of FABP5 expression with poor survival in triple-negative breast cancer: implication for retinoic acid therapy. Am J Pathol 178:997–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F-L et al (2016) Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 7:4122–4141

    Article  PubMed  Google Scholar 

  • Liu D et al (2017) Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res 16:288–297

    Article  PubMed  Google Scholar 

  • Liu M et al (2018) Tumor-suppressing effects of microRNA-612 in bladder cancer cells by targeting malic enzyme 1 expression. Int J Oncol 52:1923–1933

    PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2019) Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 24:101167–101167

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo M et al (2008) The x cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602

    Article  PubMed  Google Scholar 

  • Lomelino CL et al (2017) Asparagine synthetase: function, structure, and role in disease. J Biol Chem 292:19952–19958

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes-Coelho F et al (2016) HNF1β drives glutathione (GSH) synthesis underlying intrinsic carboplatin resistance of ovarian clear cell carcinoma (OCCC). Tumor Biol 37:4813–4829

    Article  Google Scholar 

  • Lopes-Coelho F et al (2017) Monocarboxylate transporter 1 (MCT1), a tool to stratify acute myeloid leukemia (AML) patients and a vehicle to kill cancer cells. Oncotarget 8:82803–82823

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes-Coelho F et al (2018) Breast cancer metabolic cross-talk: fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 462:93–106

    Article  PubMed  Google Scholar 

  • Lu Y-X et al (2018) ME1 regulates NADPH homeostasis to promote gastric cancer growth and metastasis. Cancer Res 78:1972–1985

    Article  PubMed  Google Scholar 

  • Lu X et al (2019) Metabolic profiling analysis upon acylcarnitines in tissues of hepatocellular carcinoma revealed the inhibited carnitine shuttle system caused by the downregulated carnitine palmitoyltransferase 2. Mol Carcinog 58:749–759

    Article  PubMed  Google Scholar 

  • Luebker SA, Koepsell SA (2019) Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front Oncol 9:268–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukey MJ et al (2013) Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem 5:1685–1700

    Article  PubMed  Google Scholar 

  • Luo W et al (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv Q et al (2019) FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. Int J Oncol 54:1221–1232

    PubMed  PubMed Central  Google Scholar 

  • Lyssiotis CA, Cantley LC (2014) Acetate fuels the cancer engine. Cell 159:1492–1494

    Article  PubMed  Google Scholar 

  • Mackenzie R et al (2015) Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer 15:415–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Madunić IV et al (2018) Sodium-glucose cotransporters: new targets of cancer therapy? Arhiv za higijenu rada i toksikologiju 69:278

    Article  PubMed  Google Scholar 

  • Manabe Y et al (2003) Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer–stromal cell interactions. J Pathol 201:221–228

    Article  PubMed  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  PubMed  Google Scholar 

  • Mantovani A et al (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322

    Article  PubMed  Google Scholar 

  • Mao Y et al (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32:303–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao A et al (2019) KLF8 is associated with poor prognosis and regulates glycolysis by targeting GLUT4 in gastric cancer. J Cell Mol Med 23:5087–5097

    Article  PubMed  PubMed Central  Google Scholar 

  • Marani M et al (2016) A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget 7:4570–4583

    Article  PubMed  Google Scholar 

  • Marchiq I, Pouysségur J (2016) Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H+ symporters. J Mol Med 94:155–171

    Article  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425

    Article  PubMed  Google Scholar 

  • Martinez-Outschoorn UE et al (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival. Cell Cycle 9:3515–3533

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE et al (2011) Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle 10:2504–2520

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE et al (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60

    Article  PubMed  Google Scholar 

  • Mashek DG et al (2004) Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J Lipid Res 45:1958–1961

    Article  PubMed  Google Scholar 

  • Mashima T et al (2009) Acyl-CoA synthetase as a cancer survival factor: its inhibition enhances the efficacy of etoposide. Cancer Sci 100:1556–1562

    Article  PubMed  Google Scholar 

  • Mashimo T et al (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614

    Article  PubMed  PubMed Central  Google Scholar 

  • Mates JM et al (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 13:514–534

    Article  PubMed  Google Scholar 

  • Matés JM et al (2018) Glutaminase isoenzymes in the metabolic therapy of cancer. Biochimica et Biophysica Acta (BBA) – Rev Cancer 1870:158–164

    Article  Google Scholar 

  • Mathupala SP et al (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24

    Article  PubMed  Google Scholar 

  • McBrian MA et al (2013) Histone acetylation regulates intracellular pH. Mol Cell 49:310–321

    Article  PubMed  Google Scholar 

  • Mele L et al (2019) Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation. J Exp Clin Cancer Res 38:160–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Menard JA et al (2016) Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Res 76:4828–4840

    Article  PubMed  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763

    Article  PubMed  Google Scholar 

  • Menendez JA et al (2016) The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells. Oncoscience 3:242–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Metallo CM et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Mieyal JJ et al (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–1988

    Article  PubMed  PubMed Central  Google Scholar 

  • Milger K et al (2006) Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci 119:4678–4688

    Article  PubMed  Google Scholar 

  • Módis K et al (2013) Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol 86:1311–1319

    Article  PubMed  Google Scholar 

  • Moellering RE et al (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25:411–425

    Article  PubMed  Google Scholar 

  • Monroe GR et al (2019) Identification of human D lactate dehydrogenase deficiency. Nat Commun 10:1477–1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon J-S et al (2011) Krüppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J Biol Chem 286:23808–23816

    Article  PubMed  PubMed Central  Google Scholar 

  • Mossmann D et al (2018) mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 18:744–757

    Article  PubMed  Google Scholar 

  • Mroczko B et al (2007) Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta 380:208–212

    Article  PubMed  Google Scholar 

  • Munir R et al (2019) Lipid metabolism in cancer cells under metabolic stress. Br J Cancer 120:1090–1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagao K et al (2018) Fatty acid binding protein 7 may be a marker and therapeutic targets in clear cell renal cell carcinoma. BMC Cancer 18:1114–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima C et al (2018) Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma. Cancer Sci 109:2036–2045

    Article  PubMed  PubMed Central  Google Scholar 

  • Netto LES et al (2007) Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol Part C Toxicol Pharmacol 146:180–193

    Article  Google Scholar 

  • Nguyen XC et al (2008) High correlations between primary tumours and loco-regional metastatic lymph nodes in non-small-cell lung cancer with respect to glucose transporter type 1-mediated 2-deoxy-2-F18-fluoro-d-glucose uptake. Eur J Cancer 44:692–698

    Google Scholar 

  • Nieman KM et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes SC, Serpa J (2018) Glutathione in ovarian cancer: a double-edged sword. Int J Mol Sci 19:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes SC et al (2018a) Cysteine boosters the evolutionary adaptation to CoCl(2) mimicked hypoxia conditions, favouring carboplatin resistance in ovarian cancer. BMC Evol Biol 18:97–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes SC et al (2018b) Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci Rep 8:9513–9513

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuno S et al (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer 88:951–956

    Article  PubMed  PubMed Central  Google Scholar 

  • Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  PubMed  Google Scholar 

  • Pan Y et al (2015) Radiation exposure promotes hepatocarcinoma cell invasion through epithelial mesenchymal transition mediated by H<sub>2</sub>S/CSE pathway. Radiat Res 185(96–105):110

    Google Scholar 

  • Pan J et al (2019) CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J Exp Clin Cancer Res 38:52–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Panza E et al (2015) Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res 28:61–72

    Article  PubMed  Google Scholar 

  • Paradise RK et al (2011) Acidic extracellular pH promotes activation of integrin α(v)β(3). PLoS One 6:e15746–e15746

    Article  PubMed  PubMed Central  Google Scholar 

  • Park Y-Y et al (2013) Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology 58:182–191

    Article  PubMed  Google Scholar 

  • Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattanayak SP et al (2018) Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways. Biomed Pharmacother 108:297–308

    Article  PubMed  Google Scholar 

  • Pavlides S et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    Article  PubMed  Google Scholar 

  • Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedraz-Cuesta E et al (2015) The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells. BMC Cancer 15:411–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Penny HL et al (2016) Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology 5:e1191731–e1191731

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Miguelsanz J et al (2017) Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle. Biochimica et Biophysica Acta (BBA) – Mol Cell Res 1864:1165–1182

    Article  Google Scholar 

  • Pértega-Gomes N et al (2014) A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer 14:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Picon-Ruiz M et al (2016) Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b–mediated malignant progression. Cancer Res 76:491–504

    Article  PubMed  Google Scholar 

  • Pissimissis N et al (2009) The Glutamatergic system expression in human PC-3 and LNCaP prostate cancer cells. Anticancer Res 29:371–377

    PubMed  Google Scholar 

  • Poisson LM et al (2015) A metabolomic approach to identifying platinum resistance in ovarian cancer. J Ovarian Res 8:13–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Porstmann T et al (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Potts A et al (2018) Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am J Physiol Gastrointest Liver Physiol 315:G249–G258

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao A et al (2016) Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications. Front Med 10:33–40

    Article  PubMed  Google Scholar 

  • Rajasinghe LD et al (2019) Delta-tocotrienol modulates glutamine dependence by inhibiting ASCT2 and LAT1 transporters in non-small cell lung cancer (NSCLC) cells: a metabolomic approach. Metabolites 9:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramapriyan R et al (2019) Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 195:162–171

    Article  PubMed  Google Scholar 

  • Ramos-Martinez JI (2017) The regulation of the pentose phosphate pathway: remember Krebs. Arch Biochem Biophys 614:50–52

    Article  PubMed  Google Scholar 

  • Read JA et al (2001) Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 43:175–185

    Article  PubMed  Google Scholar 

  • Reis LMD et al (2019) Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition–resistant triple-negative breast cancer cells. J Biol Chem 294:9342–9357

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds MR et al (2013) Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33:556

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds MR et al (2014) Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33:556–566

    Article  PubMed  Google Scholar 

  • Ricci M et al (2018) PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chem Biol Interact 292:9–14

    Article  PubMed  Google Scholar 

  • Riganti C et al (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53:421–436

    Article  PubMed  Google Scholar 

  • Rodríguez-Enríquez S et al (2000) Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch Biochem Biophys 375:21–30

    Article  PubMed  Google Scholar 

  • Rodríguez-Enríquez S et al (2006) Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol Appl Pharmacol 215:208–217

    Article  PubMed  Google Scholar 

  • Rohani N et al (2019) Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res 79:1952–1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero R et al (2017) Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med 23:1362–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozovski U et al (2018) STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells. Oncotarget 9:21268–21280

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph MC et al (2012) Mammalian fatty acid synthase activity from crude tissue lysates tracing 13C-labeled substrates using gas chromatography-mass spectrometry. Anal Biochem 428:158–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha SK et al (2019) Multiomics analysis reveals that GLS and GLS2 differentially modulate the clinical outcomes of cancer. J Clin Med 8:355

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanità P et al (2014) Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14:154–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Santander AM et al (2015) Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of Obesity and inflammation in breast adipose tissue. Cancers (Basel) 7:143–178

    Article  PubMed  Google Scholar 

  • Santi A et al (2013) The effects of CA IX catalysis products within tumor microenvironment. Cell Commun Signal 11:81–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarfraz I et al (2018) Malic enzyme 2 as a potential therapeutic drug target for cancer. IUBMB Life 70:1076–1083

    Article  PubMed  Google Scholar 

  • Sato-Tadano A et al (2013) Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1α and Ki-67. Cancer Sci 104:1380–1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawayama H et al (2019) Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer. Cancer Sci 110:1705–1714

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheepers A et al (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr 28:364–371

    Article  Google Scholar 

  • Sekiguchi F et al (2016) Endogenous hydrogen sulfide enhances cell proliferation of human gastric cancer AGS cells. Biol Pharm Bull 39:887–890

    Article  PubMed  Google Scholar 

  • Selvarajah B et al (2019) mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β<sub>1</sub>–induced collagen biosynthesis. Sci Signal 12:eaav3048

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen S et al (2015) Role of cystathionine β-synthase in human breast Cancer. Free Radic Biol Med 86:228–238

    Article  PubMed  Google Scholar 

  • Shiozaki A et al (2014) xCT, component of cysteine/glutamate transporter, as an independent prognostic factor in human esophageal squamous cell carcinoma. J Gastroenterol 49:853–863

    Article  PubMed  Google Scholar 

  • Shpilberg Y et al (2015) The direct and indirect effects of corticosterone and primary adipose tissue on MCF7 breast cancer cell cycle progression. In: Hormone molecular Biology and clinical investigation. De Gruyter, Berlin, p 91

    Google Scholar 

  • Sikder MOF et al (2017) The Na+/Cl−-coupled, broad-specific, amino acid transporter SLC6A14 (ATB0,+): emerging roles in multiple diseases and therapeutic potential for treatment and diagnosis. AAPS J 20:12

    Article  PubMed  Google Scholar 

  • Silva LS et al (2016) STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment. Tumor Biol 37:5385–5395

    Article  Google Scholar 

  • Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041–282041

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Son J et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl A et al (2002) Insulin causes fatty acid transport Protein translocation and enhanced fatty Acid uptake in adipocytes. Dev Cell 2:477–488

    Article  PubMed  Google Scholar 

  • Stepulak A et al (2014) Glutamate and its receptors in cancer. J Neural Transm (Vienna) 121:933–944

    Article  PubMed  Google Scholar 

  • Still ER, Yuneva MO (2017) Hopefully devoted to Q: targeting glutamine addiction in cancer. Br J Cancer 116:1375–1381

    Article  PubMed  PubMed Central  Google Scholar 

  • Stincone A et al (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963

    Article  PubMed  Google Scholar 

  • Storch J, McDermott L (2009) Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 50(Suppl):S126–S131

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Y et al (2013) Id1 enhances human ovarian cancer endothelial progenitor cell angiogenesis via PI3K/Akt and NF-κB/MMP-2 signaling pathways. J Transl Med 11:132–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L et al (2017) Decreased expression of acetyl-CoA synthase 2 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Cancer Sci 108:1338–1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Q et al (2018) Hypermethylated CD36 gene affected the progression of lung cancer. Gene 678:395–406

    Article  PubMed  Google Scholar 

  • Sun T et al (2019) Anoikis resistant mediated by FASN promoted growth and metastasis of osteosarcoma. Cell Death Dis 10:298–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung YK et al (2007) Regulation of cell growth by fatty acid-CoA ligase 4 in human hepatocellular carcinoma cells. Exp Amp Mol Med 39:477

    Article  Google Scholar 

  • Suzuki S et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 107:7461–7466

    Article  PubMed  PubMed Central  Google Scholar 

  • Swierczynski J et al (2014) Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 20:2279–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo C et al (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110:12474–12479

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Goldberg E (2009) Homo sapiens Lactate Dehydrogenase c (Ldhc) gene expression in cancer cells is regulated by transcription factor Sp1, CREB, and CpG island methylation. J Androl 30:157–167

    Article  PubMed  Google Scholar 

  • Tannahill GM et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Tchou J et al (2012) Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genet 5:39

    Google Scholar 

  • Thangaraju M et al (2006) SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Cancer Res 66:11560–11564

    Article  PubMed  Google Scholar 

  • Thoen LFR et al (2011) A role for autophagy during hepatic stellate cell activation. J Hepatol 55:1353–1360

    Article  PubMed  Google Scholar 

  • Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871

    Article  PubMed  Google Scholar 

  • Toy EP et al (2009) Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia (New York NY) 11:136–144

    Article  Google Scholar 

  • Traverso N et al (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:972913–972913

    Article  Google Scholar 

  • Tsai W-W et al (2015) ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis. Proc Natl Acad Sci U S A 112:2699–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Turbat-Herrera EA et al (2018) Cystathione β-synthase is increased in thyroid malignancies. Anticancer Res 38:6085–6090

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno T et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    PubMed  Google Scholar 

  • Umapathy A et al (2018) Functional characterisation of glutathione export from the rat lens. Exp Eye Res 166:151–159

    Article  PubMed  Google Scholar 

  • Updegraff BL et al (2018) Transmembrane protease TMPRSS11B promotes lung cancer growth by enhancing lactate export and glycolytic metabolism. Cell Rep 25:2223–2233.e2226

    Article  PubMed  PubMed Central  Google Scholar 

  • Valsecchi R et al (2016) HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood 127:1987–1997

    Article  PubMed  PubMed Central  Google Scholar 

  • Valvona CJ et al (2016) The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathol 26:3–17

    Article  PubMed  Google Scholar 

  • van Jaarsveld MTM et al (2015) miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer 14:196–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Vangapandu HV et al (2017) The Stromal microenvironment modulates mitochondrial oxidative phosphorylation in chronic Lymphocytic leukemia cells. Neoplasia 19:762–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhove K et al (2019) Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci 20:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Viale A, Corti D, Draetta GF (2015) Highlights from recent cancer literature. Cancer Res 75:3685–3686

    Article  PubMed  Google Scholar 

  • Visscher M et al (2016) Covalent targeting of acquired cysteines in cancer. Curr Opin Chem Biol 30:61–67

    Article  PubMed  Google Scholar 

  • Wahi K, Holst J (2019) ASCT2: a potential cancer drug target. Expert Opin Ther Targets 23:555–558

    Article  PubMed  Google Scholar 

  • Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  PubMed  Google Scholar 

  • Wang W, Ballatori N (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 50:335–356

    PubMed  Google Scholar 

  • Wang Z, Dong C (2019) Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 5:30–45

    Article  PubMed  Google Scholar 

  • Wang Y et al (2012a) Prognostic and therapeutic implications of increased ATP citrate lyase expression in human epithelial ovarian cancer. Oncol Rep 27:1156–1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y-Y et al (2012b) Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett 324:142–151

    Article  PubMed  Google Scholar 

  • Wang Q et al (2014a) Targeting glutamine transport to suppress melanoma cell growth. Int J Cancer 135:1060–1071

    Article  PubMed  Google Scholar 

  • Wang F et al (2014b) Mammary fat of breast cancer: gene expression profiling and functional characterization. PLoS One 9:e109742–e109742

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C et al (2015) Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One 10:e0119348–e0119348

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q et al (2016) Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle 15:1376–1385

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H et al (2017a) The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546:426–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M et al (2017b) Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget 8:8083–8094

    Article  PubMed  Google Scholar 

  • Wang YY et al (2017c) Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2:e87489–e87489

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S et al (2018a) KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration. Cell Res 28:572–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2018b) Prognostic value of D-lactate dehydrogenase in patients with clear cell renal cell carcinoma. Oncol Lett 16:866–874

    PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2019a) Wnt1-inducible signaling protein 1 regulates laryngeal squamous cell carcinoma glycolysis and chemoresistance via the YAP1/TEAD1/GLUT1 pathway. J Cell Physiol 234:15941–15950

    Article  PubMed  Google Scholar 

  • Wang X et al (2019b) Nf1 loss promotes Kras-driven lung adenocarcinoma and results in Psat1-mediated glutamate dependence. EMBO Mol Med 11:e9856

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2019c) I157172, a novel inhibitor of cystathionine gamma-lyase, inhibits growth and migration of breast cancer cells via SIRT1-mediated deacetylation of STAT3. Oncol Rep 41:427–436

    PubMed  Google Scholar 

  • Wang Y et al (2019d) Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: anti-cancer therapeutical effects of natural cyclopeptide RA-XII. Biochem Biophys Res Commun 512:819–824

    Article  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  Google Scholar 

  • Weber GF (2016) Metabolism in cancer metastasis. Int J Cancer 138:2061–2066

    Article  PubMed  Google Scholar 

  • Wei L et al (2016) Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J Exp Clin Cancer Res 35:166–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J et al (2019) An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568:566–570

    Article  PubMed  Google Scholar 

  • Wellen KE et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen Y-A et al (2017) Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis 8:e2593–e2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen H et al (2019) Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer. Biochimica et Biophysica Acta (BBA) – Mol Cell Biol Lipids 1864:413–421

    Article  Google Scholar 

  • Wenes M et al (2016) Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24:701–715

    Article  PubMed  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    Article  PubMed  PubMed Central  Google Scholar 

  • Wise DR et al (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108:19611–19616

    Article  PubMed  PubMed Central  Google Scholar 

  • Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron 2(Suppl 1):9–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Article  PubMed  Google Scholar 

  • Wu Q et al (2006) FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 26:3455–3467

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu R et al (2013a) Type I to type II ovarian carcinoma progression: mutant Trp53 or Pik3ca confers a more aggressive tumor phenotype in a mouse model of ovarian cancer. Am J Pathol 182:1391–1399

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X et al (2013b) Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS One 8:e77060–e77060

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2018) Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835

    Google Scholar 

  • Xi J et al (2019) GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp Cell Res 381:1–9

    Article  PubMed  Google Scholar 

  • Xiang L et al (2019) Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis 10:40–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Xintaropoulou C et al (2018) Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer 18:636–636

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu N et al (2012) The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 198:895–911

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S et al (2013) CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane. Biochemistry 52:7254–7261

    Article  PubMed  Google Scholar 

  • Xu W et al (2018a) Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. Cell Mol Life Sci 75:4583–4598

    Article  PubMed  Google Scholar 

  • Xu Y et al (2018b) miR-27b-3p is involved in doxorubicin resistance of human anaplastic thyroid cancer cells via targeting peroxisome proliferator-activated receptor gamma. Basic Clin Pharmacol Toxicol 123:670–677

    Article  PubMed  Google Scholar 

  • Yan S-X et al (2013) Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci 10:1375–1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan S et al (2015) Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol 21:3492–3498

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan X et al (2017) Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells. Sci Rep 7:12920–12920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C et al (2014) Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell 56:414–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L et al (2016) Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 24:685–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang P et al (2018) Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett 438:76–85

    Article  PubMed  Google Scholar 

  • Yang H et al (2019) Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer. Oncotarget 10:3066–3083

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang-Hartwich Y et al (2014) p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34:3605

    Article  PubMed  Google Scholar 

  • Yi W et al (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337:975–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin N et al (2004) Molecular mechanisms involved in the growth stimulation of Breast cancer cells by leptin. Cancer Res 64:5870–5875

    Article  PubMed  Google Scholar 

  • Yin X et al (2017) ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. J Exp Clin Cancer Res 36:166–166

    Article  PubMed  PubMed Central  Google Scholar 

  • You J et al (2017) Cystathionine- γ-lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget 8:65677–65686

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L et al (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14:207–215

    Article  PubMed  Google Scholar 

  • Yu W et al (2019) SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive oxygen species. Onco Targets Ther 12:2861–2868

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi N et al (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72:3709–3714

    Article  PubMed  Google Scholar 

  • Zanotto-Filho A et al (2016) Alkylating agent-induced NRF2 blocks endoplasmic reticulum stress-mediated Apoptosis via control of glutathione pools and protein thiol Homeostasis. Mol Cancer Ther 15:3000–3014

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan L et al (2012a) Regulatory role of KEAP1 and NRF2 in PPARγ expression and chemoresistance in human non-small-cell lung carcinoma cells. Free Radic Biol Med 53:758–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan T et al (2012b) Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One 7:e45087–e45087

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2012) Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 14:276–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56:205–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D et al (2015) Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep 10:1335–1348

    Article  PubMed  Google Scholar 

  • Zhang C et al (2016) Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. elife 5:e10727–e10727

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B et al (2017) IL-17A enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1. Front Mol Neurosci 10:271–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2018a) Acetyl-CoA synthetase 2 enhances tumorigenesis and is indicative of a poor prognosis for patients with renal cell carcinoma. Urol Oncol Semin Orig Investig 36:243.e249–243.e220

    Google Scholar 

  • Zhang M et al (2018b) Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov 8:1006–1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2019a) LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. In Biol Chem, pp 663

    Google Scholar 

  • Zhang Z-G et al (2019b) KDM5B promotes breast cancer cell proliferation and migration via AMPK-mediated lipid metabolism reprogramming. Exp Cell Res 379:182–190

    Article  PubMed  Google Scholar 

  • Zhao H et al (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. elife 5:e10250–e10250

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W et al (2018) LINK-A promotes cell proliferation through the regulation of aerobic glycolysis in non-small-cell lung cancer. Onco Targets Ther 11:6071–6080

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng G-F et al (2015) Unfolded protein response mediated JNK/AP-1 signal transduction, a target for ovarian cancer treatment. Int J Clin Exp Pathol 8:6505–6511

    PubMed  PubMed Central  Google Scholar 

  • Zhong J et al (2010) Temporal profiling of the secretome during adipogenesis in humans. J Proteome Res 9:5228–5238

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2013) ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol Cancer Ther 12:2782–2791

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J et al (2019) Oncoprotein LAMTOR5 activates GLUT1 Via upregulating NF-κB in liver cancer. Open Med (Wars) 14:264–270

    Article  PubMed  Google Scholar 

  • Zhu H et al (2018) Cystathionine β-Synthase in physiology and cancer. Biomed Res Int 2018:3205125–3205125

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge iNOVA4Health – UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta Serpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serpa, J. (2020). Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. In: Serpa, J. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1219. Springer, Cham. https://doi.org/10.1007/978-3-030-34025-4_1

Download citation

Publish with us

Policies and ethics