Skip to main content

Glutathione, an Over One Billion Years Ancient Molecule, Is Still Actively Involved in Cell Regulatory Pathways

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

Glutathione is a very ancient molecule widely distributed in aerobic cells and organisms, either prokaryotes or eukaryotes. Since glutathione in not found in anaerobic cells it could have evolved in the course of the adaptation to the presence of oxygen in the atmosphere. Glutathione is the major non-protein low molecular weight antioxidant and the most important cellular thiol reducing agent. Glutathione biosynthesis occurs in the cytosol from its constituent amino acids; GSH is present also in the most important cellular districts like mitochondria and nucleus to indicate its central role in several metabolic pathways and protective mechanisms. There are several glutathione dependent enzymes involved in various steps of cell metabolism. GSH is a key antioxidant that modulates various cellular processes and therefore is determinant for redox signaling, xenobiotics’s detoxication, regulation of cell proliferation, apoptosis and immune functions. Glutathione concentration and redox state is due to a complex interaction between biosynthesis, utilization, degradation, and transport. All these factors are of great importance for understanding the significance of cellular redox balance and its correlation with pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aceto A, Dragani B, Melino S et al (1998) Structural characterization of human glyoxalase II as probed by limited proteolysis. Biochem Mol Biol Int 44:761–769

    Google Scholar 

  2. Aquilano K, Baldelli S, Ciriolo MR (2014) Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol Front Pharmacol 5:196. https://doi.org/10.3389/fphar.2014.00196 eCollection 2014

    Article  Google Scholar 

  3. Armeni T, Tomasetti M, Svegliati Baroni S et al (1997) Dietary restriction affects antioxidant levels in rat liver mitochondria during ageing. Molec Aspects Med 18:S247–S250

    Article  Google Scholar 

  4. Armeni T, Pieri C, Marra M et al (1998) Studies on the life prolonging effect of food restriction: Glutathione levels and glyoxalase enzymes in rat liver. Mech Ageing Dev 101:101–110

    Article  Google Scholar 

  5. Armeni T, Ghiselli R, Balercia G et al (2000) Glutathione and ultrastructural changes in inflow occlusion of rat liver. J Surg Res 88:207–214

    Article  Google Scholar 

  6. Armeni T, Battino M, Stronati A et al (2001) Total antioxidant capacity and nuclear DNA damage in keratinocytes after exposure to H2O2. Biol Chem 382:1697–1705

    Article  Google Scholar 

  7. Armeni T, Ercolani L, Urbanelli L et al (2012) Cellular redox imbalance and changes of protein S-glutathionylation patterns are associated with senescence induced by oncogenic H-ras. PLoS ONE 7:e52151. https://doi.org/10.1371/journal.pone.0052151

    Article  Google Scholar 

  8. Armeni T, Cianfruglia L, Piva F et al (2014) S-D-Lactoylglutathione can be an alternative supply of mitochondrial glutathione. Free Radic Biol Med 67:451–459

    Article  Google Scholar 

  9. Armstrong JS, Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. Faseb J 16:1263–1265

    Article  Google Scholar 

  10. Bacchetti T, Masciangelo S, Armeni T et al (2014) Glycation of human high density lipoprotein by methylglyoxal: effect on HDL-paraoxonase activity. Metabolism 63:307–311

    Article  Google Scholar 

  11. Bartolini D, Piroddi M, Tidei C et al (2015) Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D, L-polylactide microparticle formulation. Free Radic Biol Med 78:56–65

    Article  Google Scholar 

  12. Bartolini D, Galli F (2016) The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 1019:29–44

    Article  Google Scholar 

  13. Chen YR, Chen CL, Pfeiffer DR, Zweier JL (2007) Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J Biol Chem 282:32640–32654

    Article  Google Scholar 

  14. Chen SL, Fang WH, Himo F (2009) Reaction mechanism of the binuclear zinc enzyme glyoxalase II—a theoretical study. J Inorg Biochem 103:274–281

    Article  Google Scholar 

  15. Chen CA, Wang TY, Varadharaj S et al (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    Article  Google Scholar 

  16. Cianfruglia L, Perrelli A, Fornelli C et al (2019) KRIT loss-of-function associated with cerebral cavernous malformation disease leads to enhanced S-glutathionylation of distinct structural and regulatory proteins. Antioxidant 8(1), pii: E27. https://doi.org/10.3390/antiox8010027

  17. Circu ML, Aw TY (2012) Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 1823:1767–1777

    Article  Google Scholar 

  18. Dalle-Donne I, Milzani A, Gagliano N et al (2008) Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal 10:445–473

    Article  Google Scholar 

  19. Damiani E, Brugè F, Cirilli I et al (2018) Modulation of oxidative status by normoxia and hypoxia on cultures of human dermal fibroblasts: how does it affect cell aging? Oxid Med Cell Longev 23(2018):5469159. https://doi.org/10.1155/2018/5469159 eCollection 2018

    Article  Google Scholar 

  20. Ercolani L, Scirè A, Galeazzi R et al (2016) A possible S-glutathionylation of specific proteins by glyoxalase II: an in vitro and in silico study. Cell Biochem Funct 34:620–627

    Article  Google Scholar 

  21. Fahey RC, Brown WC, Adams WB et al (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129

    Google Scholar 

  22. Fahey RC, Newton GL, Arrick B et al (1984) Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224:70–72

    Article  Google Scholar 

  23. Ferguson G, Bridge W (2016) Glutamate cysteine ligase and the age-related decline in cellular glutathione: the therapeutic potential of γ-glutamylcysteine. Arch Biochem Biophys 593:12–23

    Article  Google Scholar 

  24. Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404

    Article  Google Scholar 

  25. Galeazzi R, Laudadio E, Falconi E et al (2018) Protein-protein interactions of human glyoxalase II: findings of a reliable docking protocol. Org Biomol Chem 16:5167–5177

    Article  Google Scholar 

  26. Herszage J, dos Santos AM, Luther Luther GW (2003) Oxidation of cysteine and glutathione by soluble polymeric MnO2. Environ Sci Technol 37:3332–3338

    Article  Google Scholar 

  27. Honek JF (2015) Glyoxalase biochemistry. Biomol Concepts 6:401–414

    Article  Google Scholar 

  28. Janowiak BE, Griffith OW (2005) Glutathione synthesis in Streptococcus agalactiae. One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem 280:11829–11839

    Article  Google Scholar 

  29. Jassem W, Ciarimboli C, Cerioni PN et al (1996) Glyoxalase II and glutathione levels in rat liver mitochondria during cold storage in Euro-Collins and University of Wisconsin solutions. Transplantation 61:1416–1420

    Article  Google Scholar 

  30. Jassem W, Armeni T, Quiles JL et al (2006) Protection of mitochondria during cold storage of liver and following transplantation: comparison of the two solutions, University of Wisconsin and Eurocollins. J Bioenerg Biomembr 38:49–55

    Article  Google Scholar 

  31. Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746

    Article  Google Scholar 

  32. Kendall EC, Nord FF (1926) Reversible oxidation-reduction systems of cysteine-cystine and reduced and oxidized glutathione. J Biol Chem 69:295–337

    Google Scholar 

  33. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    Article  Google Scholar 

  34. Lupattelli M, Principato GB, Talesa V (1986) Glyoxalase II in germinating mung bean (Vigna radiata (l.) wilcz.). Giornale Botanico Italiano 120:110–111

    Article  Google Scholar 

  35. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115

    Article  Google Scholar 

  36. Mailloux RJ, McBride SL, Harper ME (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38:592–602

    Article  Google Scholar 

  37. Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139

    Article  Google Scholar 

  38. Mailloux RJ, Treberg JR (2016) Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Redox Biol 8:110–118

    Article  Google Scholar 

  39. Mari M, Morales A, Colell A et al (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  Google Scholar 

  40. Mieyal JJ, Gallogly MM, Qanungo S et al (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–1988

    Article  Google Scholar 

  41. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  Google Scholar 

  42. Norton SJ, Principato GB, Talesa V et al (1989) Glyoxalase II from Zea mays: properties and inhibition study of the enzyme purified by use of a new affinity ligand. Enzyme 42:189–196

    Article  Google Scholar 

  43. Norton SJ, Talesa V, Yuan W-J et al (1990) Glyoxalase I and glyoxalase II from Aloe vera: purification, characterization and comparison with animal glyoxalases. Biochem Int 22:411–418

    Article  Google Scholar 

  44. Principato GB, Rosi G, Talesa V et al (1984) Purification of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from calf brain. Biochem Int 9:351–359

    Google Scholar 

  45. Principato GB, Rosi G, Talesa V et al (1985) Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human brain. IRCS Med Sci 13:952–953

    Google Scholar 

  46. Principato GB, Rosi G, Talesa V et al (1987) A comparative study on glyoxalase II from vertebrata. Enzyme 37:164–168

    Article  Google Scholar 

  47. Raftos JE, Whillier S, Kuchel PW (2010) Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. J Biol Chem 285:23557–23567

    Article  Google Scholar 

  48. Requejo R, Hurd TR, Costa NJ et al (2010) Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J 277:1465–1480

    Article  Google Scholar 

  49. Ridderström M, Saccucci F, Hellman U et al (1996) Molecular cloning, heterologous expression, and characterization of human glyoxalase II. J Biol Chem 271:319–323

    Article  Google Scholar 

  50. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  Google Scholar 

  51. Scirè A, Cianfruglia L, Minnelli C et al (2018) Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. BioFactors. https://doi.org/10.1002/biof.1476

    Article  Google Scholar 

  52. Smirnova GV, Oktyabrsky ON (2005) Glutathione in Bacteria. Biochemistry (Mosc) 70:1199–1211

    Article  Google Scholar 

  53. Sundquist AR, Fahey RC (1989) The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium. J Biol Chem 15:719–725

    Google Scholar 

  54. Szajewski RP, Whitesides GM (1980) Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc 102:2011–2026

    Article  Google Scholar 

  55. Taylor ER, Hurrell F, Shannon RJ et al (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    Article  Google Scholar 

  56. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  57. Toppo S, Flohe L, Ursini F et al (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790:1486–1500

    Article  Google Scholar 

  58. Townsend DM (2007) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324

    Article  Google Scholar 

  59. Woodward W, Fischer JH, Johnson JE (2016) Evolution of oxygenic photosynthesis. Annual Rev Earth and Planetary Sciences 44:647–683

    Article  Google Scholar 

  60. Zhang H, Forman HJ, Choi J (2005) Gamma-glutamyl transpeptidase in glutathione biosynthesis. Meth Enzymol 401:468–483

    Article  Google Scholar 

  61. Zhong Q, Putt DA, Xu F et al (2008) Hepatic mitochondrial transport of glutathione: studies in isolated rat liver mitochondria and H4IIE rat hepatoma cells. Arch Biochem Biophys 474:119–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Principato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armeni, T., Principato, G. (2020). Glutathione, an Over One Billion Years Ancient Molecule, Is Still Actively Involved in Cell Regulatory Pathways. In: Longhi, S., et al. The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-33832-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33832-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33831-2

  • Online ISBN: 978-3-030-33832-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics