Skip to main content

The Microbiome in Food Allergy and Eosinophilic Esophagitis

  • Chapter
  • First Online:
Pediatric Food Allergy

Abstract

While it has been proposed that the relatively recent rise in human food allergy is linked to an environmental factor, the fundamental understanding of the underlying etiology remains elusive. Disruption of the human microbiome is one mechanism by which the environment could influence immune and physiological dysregulation and potentiate food allergy. The microbiome is the collection of microbial organisms and their genes that co-associate with our bodies. Life style choices, including diet, levels of activity, and the degree of interaction with the outdoor world, are all associated with distinct changes in the metabolic products synthesized by the resident microbiome. The microbiome and its metabolites play an essential role in physiological stability in the human body. Disruption of this homeostasis can lead to a reduction in the synthesis of short chain fatty acids, which can retard intestinal epithelial cell maturity and alter regulatory T-cell differentiation. Additionally, certain life styles can select for the growth of bacteria that produce proinflammatory compounds, such as hydrogen sulfide or lipopolysaccharide. While the mechanisms remain unclear, the literature suggests that host-microbe interactions are central to allergic processes. In this chapter, we explore how microbiome colonization and development early in life are associated with food allergy onset and examine the potential of microbiome-based therapeutics to successfully treat food allergic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sicherer SH, Allen K, Lack G, Taylor SL, Donovan SM, Oria M. Critical issues in food allergy: a national academies consensus report. Pediatrics. 2017;140:e20170194.

    PubMed  Google Scholar 

  2. Jackson KD, Howie LD, Akinbami LJ. Trends in allergic conditions among children: United States, 1997–2011. NCHS Data Brief. 2013;121:1–8.

    Google Scholar 

  3. Gupta RS, Warren CM, Smith BM, Blumenstock JA, Jiang J, Davis MM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6):e20181235.

    PubMed  Google Scholar 

  4. Berni Canani R, Paparo L, Nocerino R, Di Scala C, Della Gatta G, Maddalena Y, et al. Gut microbiome as target for innovative strategies against food allergy. Front Immunol. 2019;10:191. https://doi.org/10.3389/fimmu.2019.00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leung ASY, Wong GWK, Tang MLK. Food allergy in the developing world. J Allergy Clin Immunol. 2018;141:76–78.e1.

    PubMed  Google Scholar 

  6. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, Set a. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73:145–52.

    CAS  PubMed  Google Scholar 

  7. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299:1259–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scudellari M. News feature: cleaning up the hygiene hypothesis. Proc Natl Acad Sci. 2017;114:1433–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bloomfield SF, Rook GA, Scott EA, Shanahan F, Stanwell-Smith R, Turner P. Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect Public Health. 2016;136:213–24.

    PubMed  PubMed Central  Google Scholar 

  10. Plunkett CH, Nagler CR. 2017. The influence of the microbiome on allergic sensitization to food. J Immunol Baltim Md. 1950;198:581–9.

    Google Scholar 

  11. Hansen CHF, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T, Tlaskalova-Hogenova H, Hansen AK. Patterns of early gut colonization shape future immune responses of the host. PLoS One. 2012;7:e34043.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. Commensal bacteria–derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18:538–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel M-J, Waligora-Dupriet A-J. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow’s milk allergy in mice. FEMS Microbiol Ecol. 2011;76:133–44.

    CAS  PubMed  Google Scholar 

  14. Sampson HA, O’Mahony L, Burks AW, Plaut M, Lack G, Akdis CA. Mechanisms of food allergy. J Allergy Clin Immunol. 2018;141:11–9.

    CAS  PubMed  Google Scholar 

  15. Wannemuehler MJ, Kiyono H, Babb JL, Michalek SM, McGhee JR. Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J Immunol. 1982;129:959–65.

    CAS  PubMed  Google Scholar 

  16. Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 2004;172:6978–87.

    CAS  PubMed  Google Scholar 

  17. Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lotz M, Gütle D, Walther S, Ménard S, Bogdan C, Hornef MW. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med. 2006;203:973–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41. https://doi.org/10.1038/nature11551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraj P, Ignatowicz L. The mechanisms shaping the repertoire of CD4+ Foxp3+ regulatory T cells. Immunology. 2018;153:290–6.

    CAS  PubMed  Google Scholar 

  21. Geuking MB, Cahenzli J, Lawson MAE, Ng DCK, Slack E, Hapfelmeier S, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34:794–806.

    CAS  PubMed  Google Scholar 

  22. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    CAS  PubMed  Google Scholar 

  23. Skelly AN, Sato Y, Kearney S, Honda K. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol. 2019;19:305–23.

    CAS  PubMed  Google Scholar 

  24. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor pathway establishes commensal gut colonization. Science. 2011;332:974–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Verma R, Lee C, Jeun E-J, Yi J, Kim KS, Ghosh A, et al. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells. Sci Immunol. 2018;3(28):pii: eaat6975. https://doi.org/10.1126/sciimmunol.aat6975.

    Article  Google Scholar 

  26. Turcanu V, Brough HA, Toit GD, Foong R-X, Marrs T, Santos AF, Lack G. Immune mechanisms of food allergy and its prevention by early intervention. Curr Opin Immunol. 2017;48:92–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barcik W, Wawrzyniak M, Akdis CA, O’Mahony L. Immune regulation by histamine and histamine-secreting bacteria. Curr Opin Immunol. 2017;48:108–13.

    CAS  PubMed  Google Scholar 

  28. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016;15:2809–24.

    CAS  PubMed  Google Scholar 

  29. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.

    CAS  PubMed  Google Scholar 

  30. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    CAS  PubMed  Google Scholar 

  31. McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev. 2017;278:277–95.

    CAS  PubMed  Google Scholar 

  32. Hirata S-I, Kunisawa J. Gut microbiome, metabolome, and allergic diseases. Allergol Int Off J Jpn Soc Allergol. 2017;66:523–8.

    CAS  Google Scholar 

  33. Shibata N, Kunisawa J, Kiyono H. Dietary and microbial metabolites in the regulation of host immunity. Front Microbiol. 2017;8:2171. https://doi.org/10.3389/fmicb.2017.02171.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kishino S, Takeuchi M, Park S-B, Hirata A, Kitamura N, Kunisawa J, et al. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci. 2013;110:17808–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kunisawa J, Arita M, Hayasaka T, Harada T, Iwamoto R, Nagasawa R, et al. Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep. 2015;5:9750.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141:272–82.

    CAS  PubMed  Google Scholar 

  37. Kremmyda L-S, Vlachava M, Noakes PS, Diaper ND, Miles EA, Calder PC. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol. 2011;41:36–66.

    CAS  PubMed  Google Scholar 

  38. Gensollen T, Blumberg RS. Correlation between early-life regulation of the immune system by microbiota and allergy development. J Allergy Clin Immunol. 2017;139:1084–91.

    PubMed  PubMed Central  Google Scholar 

  39. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21:109–17.

    PubMed  Google Scholar 

  40. Blaser MJ, Dominguez-Bello MG. The human microbiome before birth. Cell Host Microbe. 2016;20:558–60.

    CAS  PubMed  Google Scholar 

  41. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. https://doi.org/10.1126/scitranslmed.3008599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4:29.

    PubMed  PubMed Central  Google Scholar 

  43. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome. 2018;6:196.

    PubMed  PubMed Central  Google Scholar 

  44. Moles L, Gomez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 2013;8:e66986.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aidy SE, Hooiveld G, Tremaroli V, Bäckhed F, Kleerebezem M. The gut microbiota and mucosal homeostasis. Gut Microbes. 2013;4:118–24.

    PubMed  PubMed Central  Google Scholar 

  46. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:852.

    PubMed  Google Scholar 

  47. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci. 2010;107:11971–5.

    PubMed  PubMed Central  Google Scholar 

  48. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63:559–66.

    CAS  PubMed  Google Scholar 

  49. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between caesarean section and childhood asthma. Clin Exp Allergy. 2008;38:629–33.

    CAS  PubMed  Google Scholar 

  50. Lieberman JA, Greenhawt M, Nowak-Wegrzyn A. The environment and food allergy. Ann Allergy Asthma Immunol. 2018;120:455–7.

    PubMed  Google Scholar 

  51. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. 2014;16:2891–904.

    CAS  PubMed  Google Scholar 

  52. Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett. 2005;243(1):141–7.

    CAS  PubMed  Google Scholar 

  53. Azad MB, Becker AB, Guttman DS, Sears MR, Scott JA, Kozyrskyj AL. Gut microbiota diversity and atopic disease: does breast-feeding play a role? J Allergy Clin Immunol. 2013;131:247–8.

    PubMed  Google Scholar 

  54. Yasmin F, Tun HM, Konya TB, Guttman DS, Chari RS, Field CJ, et al. Cesarean section, formula feeding, and infant antibiotic exposure: separate and combined impacts on gut microbial changes in later infancy. Front Pediatr. 2017;5:200. https://doi.org/10.3389/fped.2017.00200. eCollection 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lodge CJ, Tan DJ, Lau MXZ, Dai X, Tham R, Lowe AJ, et al. Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta Paediatr. 2015;104:38–53.

    CAS  PubMed  Google Scholar 

  56. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.

    CAS  PubMed  Google Scholar 

  58. Chu DM, Meyer KM, Prince AL, Aagaard KM. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes. 2016;7:459–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Sears MR, et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol. 2013;9:15.

    Google Scholar 

  60. Bufford JD, Reardon CL, Li Z, Roberg KA, DaSilva D, Eggleston PA, et al. Effects of dog ownership in early childhood on immune development and atopic diseases. Clin Exp Allergy. 2008;38(10):1635–43. https://doi.org/10.1111/j.1365-2222.2008.03018.

    Article  CAS  PubMed  Google Scholar 

  61. Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002;288:963–72.

    PubMed  Google Scholar 

  62. Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, et al. CHILD study investigators. Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome. 2017;5:40.

    PubMed  PubMed Central  Google Scholar 

  63. Ball TM, Castro-Rodriguez JA, Griffith KA, Holberg CJ, Martinez FD, Wright AL. Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med. 2000;343:538–43.

    CAS  PubMed  Google Scholar 

  64. Koplin JJ, Dharmage SC, Ponsonby A-L, Tang MLK, Lowe AJ, et al. HealthNuts investigators. Environmental and demographic risk factors for egg allergy in a population-based study of infants. Allergy. 2012;67:1415–22.

    CAS  PubMed  Google Scholar 

  65. Hesselmar B, Sjoberg F, Saalman R, Aberg N, Adlerberth I, Wold AE. Pacifier cleaning practices and risk of allergy development. Pediatrics. 2013;131:e1829–37.

    PubMed  Google Scholar 

  66. Hirsch AG, Pollak J, Glass TA, Poulsen MN, Bailey-Davis L, Mowery J, Schwartz BS. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy J. 2017;47:236–44.

    CAS  Google Scholar 

  67. Love BL, Mann JR, Hardin JW, Lu ZK, Cox C, Amrol DJ. Antibiotic prescription and food allergy in young children. Allergy Asthma Clin Immunol. 2016;12:41.

    PubMed  PubMed Central  Google Scholar 

  68. Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Muller G, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128:646–652.e1–5.

    PubMed  Google Scholar 

  69. Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10:742–50.

    CAS  PubMed  Google Scholar 

  70. Zhao W, Ho H-E, Bunyavanich S. The gut microbiome in food allergy. Ann Allergy Asthma Immunol. 2019;122(3):276–82. https://doi.org/10.1016/j.anai.2018.12.012.

    Article  CAS  PubMed  Google Scholar 

  71. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.

    CAS  PubMed  Google Scholar 

  72. Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489:250–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT, et al. CHILD study investigators. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy J. 2015;45:632–43.

    CAS  Google Scholar 

  74. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, Jet a. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138:1122–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, et al. Early-life gut microbiome and egg allergy. Allergy. 2018;73:1515–24.

    CAS  PubMed  Google Scholar 

  76. Hua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult fecal microbiota: analysis of the American gut project. EBioMedicine. 2016;3:172–9.

    PubMed  Google Scholar 

  77. Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, Bowyer RCE, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018;9:2655.

    PubMed  PubMed Central  Google Scholar 

  78. Noval Rivas M, Burton OT, Wise P, Zhang Y, Hobson SA, Garcia Lloret M, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol. 2013;131:201–12.

    CAS  PubMed  Google Scholar 

  79. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci. 2010;107:12204–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

    CAS  PubMed  Google Scholar 

  81. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5:23.

    PubMed  PubMed Central  Google Scholar 

  82. Chen C-C, Chen K-J, Kong M-S, Chang H-J, Huang J-L. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr Allergy Immunol. 2016;27:254–62.

    PubMed  Google Scholar 

  83. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014;111:13145–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019;25:448–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bojanova DP, Bordenstein SR. Fecal transplants: what is being transferred? PLoS Biol. 2016;14:e1002503.

    PubMed  PubMed Central  Google Scholar 

  86. Grönlund M-M, Gueimonde M, Laitinen K, Kociubinski G, Grönroos T, Salminen S, Isolauri E. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy J. 2007;37:1764–72.

    Google Scholar 

  87. Garrido D, Dallas DC, Mills D. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology. 2013;159(Pt 4):649–64. https://doi.org/10.1099/mic.0.064113-0. Epub 2013 Mar 4

  88. Lewis ZT, Mills DA. Differential establishment of bifidobacteria in the breastfed infant gut. Nestle Nutr Inst Workshop Ser. 2017;88:149–59.

    PubMed  PubMed Central  Google Scholar 

  89. Gigante G, Tortora A, Ianiro G, Ojetti V, Purchiaroni F, Campanale M, et al. Role of gut microbiota in food tolerance and allergies. Dig Dis Basel Switz. 2011;29:540–9.

    Google Scholar 

  90. Garcia-Larsen V, Ierodiakonou D, Jarrold K, Cunha S, Chivinge J, Robinson Z, et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: a systematic review and meta-analysis. PLoS Med. 2018;15:e1002507.

    PubMed  PubMed Central  Google Scholar 

  91. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. The first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol. 2014;25:428–38.

    PubMed  Google Scholar 

  92. Grimshaw KEC, Maskell J, Oliver EM, Morris RCG, Foote KD, Mills ENC, et al. Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data. J Allergy Clin Immunol. 2014;133:511–9.

    PubMed  Google Scholar 

  93. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ciaccio CE, Girdhar M. Effect of maternal ω3 fatty acid supplementation on infant allergy. Ann Allergy Asthma Immunol. 2014;112:191–4.

    PubMed  PubMed Central  Google Scholar 

  95. Menni C, Zierer J, Pallister T, Jackson MA, Long T, Mohney RP, et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep. 2017;7:11079.

    PubMed  PubMed Central  Google Scholar 

  96. Watson H, Mitra S, Croden FC, Taylor M, Wood HM, Perry SL, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2018;67:1974–83.

    CAS  PubMed  Google Scholar 

  97. Vandenplas Y, De Greef E, Devreker T, Veereman-Wauters G, Hauser B. Probiotics and prebiotics in infants and children. Curr Infect Dis Rep. 2013;15:251–62.

    CAS  PubMed  Google Scholar 

  98. Bron PA, Kleerebezem M, Brummer R-J, Cani PD, Mercenier A, MacDonald TT, et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117:93–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins. 2018;10:11–21.

    PubMed  Google Scholar 

  100. Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients mediate intestinal bacteria–mucosal immune crosstalk. Front Immunol. 2018;9:5. https://doi.org/10.3389/fimmu.2018.00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Niers LEM, Timmerman HM, Rijkers GT, van Bleek GM, van Uden NOP, Knol EF, et al. Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2005;35:1481–9.

    CAS  Google Scholar 

  102. Tang MLK, Ponsonby A-L, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135:737–744.e8.

    CAS  PubMed  Google Scholar 

  103. Tang R-B, Chang J-K, Chen H-L. Can probiotics be used to treat allergic diseases? J Chin Med Assoc JCMA. 2015;78:154–7.

    PubMed  Google Scholar 

  104. Benitez AJ, Hoffmann C, Muir AB, Dods KK, Spergel JM, Bushman FD, Wang M-L. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome. 2015;3:23.

    PubMed  PubMed Central  Google Scholar 

  105. Noti M, EDT W, Kim BS, Siracusa MC, Giacomin PR, Nair MG, et al. Thymic stromal lymphopoietin–elicited basophil responses promote eosinophilic esophagitis. Nat Med. 2013;19:1005–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jensen ET, Kuhl JT, Martin LJ, Rothenberg ME, Dellon ES. Prenatal, intrapartum, and postnatal factors are associated with pediatric eosinophilic esophagitis. J Allergy Clin Immunol. 2018;141:214–22.

    PubMed  Google Scholar 

  107. Radano MC, Yuan Q, Katz A, Fleming JT, Kubala S, Shreffler W, Keet CA. Cesarean section and antibiotic use found to be associated with eosinophilic esophagitis. J Allergy Clin Immunol Pract. 2014;2:475–477.e1.

    PubMed  Google Scholar 

  108. Green DJ, Cotton CC, Dellon ES. The role of environmental exposures in the etiology of eosinophilic esophagitis: a systematic review. Mayo Clin Proc. 2015;90:1400–10.

    PubMed  Google Scholar 

  109. Harris JK, Fang R, Wagner BD, Choe HN, Kelly CJ, Schroeder S, et al. Esophageal microbiome in eosinophilic esophagitis. PLoS One. 2015;10:e0128346.

    PubMed  PubMed Central  Google Scholar 

  110. Corning B, Copland AP, Frye JW. The esophageal microbiome in health and disease. Curr Gastroenterol Rep. 2018;20:39.

    PubMed  Google Scholar 

  111. Spechler SJ. Speculation as to why the frequency of eosinophilic esophagitis is increasing. Curr Gastroenterol Rep. 2018;20:26.

    PubMed  Google Scholar 

  112. Smith AR, Macfarlane S, Furrie E, Ahmed S, Bahrami B, Reynolds N, Macfarlane GT. Microbiological and immunological effects of enteral feeding on the upper gastrointestinal tract. J Med Microbiol. 2011;60:359–65.

    PubMed  Google Scholar 

  113. Schneider S-M. Microbiota and enteral nutrition. Gastroentérologie Clin Biol. 2010;34:S57–61.

    Google Scholar 

  114. Walton C, Montoya MPB, Fowler DP, Turner C, Jia W, Whitehead RN, et al. Enteral feeding reduces metabolic activity of the intestinal microbiome in Crohn’s disease: an observational study. Eur J Clin Nutr. 2016;70:1052–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yee, A.L., Buschmann, M.M., Ciaccio, C.E., Gilbert, J.A. (2020). The Microbiome in Food Allergy and Eosinophilic Esophagitis. In: Gupta, R. (eds) Pediatric Food Allergy . Springer, Cham. https://doi.org/10.1007/978-3-030-33292-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33292-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33291-4

  • Online ISBN: 978-3-030-33292-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics