Skip to main content

Prostate Cancer Genomic Subtypes

  • Chapter
  • First Online:
Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Over the last decade, advancements in massively-parallel DNA sequencing and computational biology have allowed for unprecedented insights into the fundamental mutational processes that underlie virtually every major cancer type. Two major cancer genomics consortia—The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)—have produced rich databases of mutational, pathological, and clinical data that can be mined through web-based portals, allowing for correlative studies and testing of novel hypotheses on well-powered patient cohorts.

In this chapter, we will review the impact of these technological developments on the understanding of molecular subtypes that promote prostate cancer initiation, progression, metastasis, and clinical aggression. In particular, we will focus on molecular subtypes that define clinically-relevant patient cohorts and assess how a better understanding of how these subtypes—in both somatic and germline genomes—may influence the clinical course for individual men diagnosed with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, et al., Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. S. Baichoo, C.A. Ouzounis, Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment. Biosystems 156-157, 72–85 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. T.J. Ley, E.R. Mardis, L. Ding, B. Fulton, M.D. McLellan, K. Chen, et al., DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. Ciriello, M.L. Miller, B.A. Aksoy, Y. Senbabaoglu, N. Schultz, C. Sander, Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C.K. Zhou, D.P. Check, J. Lortet-Tieulent, M. Laversanne, A. Jemal, J. Ferlay, et al., Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int. J. Cancer 138, 1388–1400 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. I.F. Tannock, R. de Wit, W.R. Berry, J. Horti, A. Pluzanska, K.N. Chi, et al., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. J. Armenia, S.A.M. Wankowicz, D. Liu, J. Gao, R. Kundra, E. Reznik, et al., The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.F. Berger, M.S. Lawrence, F. Demichelis, Y. Drier, K. Cibulskis, A.Y. Sivachenko, et al., The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H. Muller, Androgen-control therapy in carcinoma of prostate. Arch. Chir. Neerl. 1, 77–88 (1949)

    CAS  PubMed  Google Scholar 

  10. T.H. van der Kwast, J. Schalken, J.A. Ruizeveld de Winter, C.C. van Vroonhoven, E. Mulder, W. Boersma, et al., Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int. J. Cancer 48, 189–193 (1991)

    Article  PubMed  Google Scholar 

  11. M.E. Taplin, G.J. Bubley, T.D. Shuster, M.E. Frantz, A.E. Spooner, G.K. Ogata, et al., Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. J.P. Gaddipati, D.G. McLeod, H.B. Heidenberg, I.A. Sesterhenn, M.J. Finger, J.W. Moul, et al., Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res. 54, 2861–2864 (1994)

    CAS  PubMed  Google Scholar 

  13. G. Petrovics, A. Liu, S. Shaheduzzaman, B. Furusato, C. Sun, Y. Chen, et al., Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24, 3847–3852 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. S.A. Tomlins, D.R. Rhodes, S. Perner, S.M. Dhanasekaran, R. Mehra, X.W. Sun, et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. M. Yoshimoto, A.M. Joshua, S. Chilton-Macneill, J. Bayani, S. Selvarajah, A.J. Evans, et al., Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 8, 465–469 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cancer Genome Atlas Research N, The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015)

    Article  CAS  Google Scholar 

  17. S.A. Tomlins, N. Palanisamy, J. Siddiqui, A.M. Chinnaiyan, L.P. Kunju, Antibody-based detection of ERG rearrangements in prostate core biopsies, including diagnostically challenging cases: ERG staining in prostate core biopsies. Arch. Pathol. Lab. Med. 136, 935–946 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  18. K. Park, S.A. Tomlins, K.M. Mudaliar, Y.L. Chiu, R. Esgueva, R. Mehra, et al., Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12, 590–598 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K.D. Mertz, S.R. Setlur, S.M. Dhanasekaran, F. Demichelis, S. Perner, S. Tomlins, et al., Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 9, 200–206 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S.J. Baker, E.P. Reddy, Understanding the temporal sequence of genetic events that lead to prostate cancer progression and metastasis. Proc. Natl. Acad. Sci. U. S. A. 110, 14819–14820 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Dal Pra, E. Lalonde, J. Sykes, F. Warde, A. Ishkanian, A. Meng, et al., TMPRSS2-ERG status is not prognostic following prostate cancer radiotherapy: implications for fusion status and DSB repair. Clin. Cancer Res. 19, 5202–5209 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. S. Minner, M. Enodien, H. Sirma, A.M. Luebke, A. Krohn, P.S. Mayer, et al., ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin. Cancer Res. 17, 5878–5888 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. K.J. Kron, A. Murison, S. Zhou, V. Huang, T.N. Yamaguchi, Y.J. Shiah, et al., TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat. Genet. 49(9), 1336–1345 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. S.C. Baca, D. Prandi, M.S. Lawrence, J.M. Mosquera, A. Romanel, Y. Drier, et al., Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Fraser, V.Y. Sabelnykova, T.N. Yamaguchi, L.E. Heisler, J. Livingstone, V. Huang, et al., Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541(7637), 359–364 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. J. Weischenfeldt, R. Simon, L. Feuerbach, K. Schlangen, D. Weichenhan, S. Minner, et al., Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23, 159–170 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. D.A. Quigley, H.X. Dang, S.G. Zhao, P. Lloyd, R. Aggarwal, J.J. Alumkal, et al., Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174, 758–69.e9 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D. Robinson, E.M. Van Allen, Y.M. Wu, N. Schultz, R.J. Lonigro, J.M. Mosquera, et al., Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C.S. Grasso, Y.M. Wu, D.R. Robinson, X. Cao, S.M. Dhanasekaran, A.P. Khan, et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G. Boysen, D. Nava Rodrigues, P. Rescigno, G. Seed, D.I. Dolling, R. Riisnaes, et al., SPOP mutated/CHD1 deleted lethal prostate cancer and abiraterone sensitivity. Clin. Cancer Res. 24(22), 5585–5593 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  31. R. Mehra, B. Han, S.A. Tomlins, L. Wang, A. Menon, M.J. Wasco, et al., Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 67, 7991–7995 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. X. Wang, Y. Qiao, I.A. Asangani, B. Ateeq, A. Poliakov, M. Cieslik, et al., Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Cancer Cell 31, 532–48.e7 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J.C. Brenner, B. Ateeq, Y. Li, A.K. Yocum, Q. Cao, I.A. Asangani, et al., Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19, 664–678 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Steurer, P.S. Mayer, M. Adam, A. Krohn, C. Koop, D. Ospina-Klinck, et al., TMPRSS2-ERG fusions are strongly linked to young patient age in low-grade prostate cancer. Eur. Urol. 66, 978–981 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. L.C. Trotman, M. Niki, Z.A. Dotan, J.A. Koutcher, A. Di Cristofano, A. Xiao, et al., Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  36. S. Ren, Z. Peng, J.H. Mao, Y. Yu, C. Yin, X. Gao, et al., RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 22, 806–821 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D.C. Wedge, G. Gundem, T. Mitchell, D.J. Woodcock, I. Martincorena, M. Ghori, et al., Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat. Genet. 50, 682–692 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Ren, G.H. Wei, D. Liu, L. Wang, Y. Hou, S. Zhu, et al., Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur. Urol. (2017)

    Google Scholar 

  39. N. Heisterkamp, K. Stam, J. Groffen, A. de Klein, G. Grosveld, Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315, 758–761 (1985)

    Article  CAS  PubMed  Google Scholar 

  40. J.L. Hecht, J.C. Aster, Molecular biology of Burkitt’s lymphoma. J. Clin. Oncol. 18, 3707–3721 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. S.M. Kornblau, A. Goodacre, F. Cabanillas, Chromosomal abnormalities in adult non-endemic Burkitt’s lymphoma and leukemia: 22 new reports and a review of 148 cases from the literature. Hematol. Oncol. 9, 63–78 (1991)

    Article  CAS  PubMed  Google Scholar 

  42. G. Kaur, R. Gupta, N. Mathur, L. Rani, L. Kumar, A. Sharma, et al., Clinical impact of chromothriptic complex chromosomal rearrangements in newly diagnosed multiple myeloma. Leuk. Res. 76, 58–64 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. N.D. Anderson, R. de Borja, M.D. Young, F. Fuligni, A. Rosic, N.D. Roberts, et al., Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, eaam8419 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. A. Steininger, G. Ebert, B.V. Becker, C. Assaf, M. Mobs, C.A. Schmidt, et al., Genome-wide analysis of interchromosomal interaction probabilities reveals chained translocations and overrepresentation of translocation breakpoints in genes in a cutaneous T-cell lymphoma cell line. Front. Oncol. 8, 183 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Z. Wang, Y. Cheng, J.M. Abraham, R. Yan, X. Liu, W. Chen, et al., RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement. Cancer 123, 3916–3924 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. J.K. Lee, S. Louzada, Y. An, S.Y. Kim, S. Kim, J. Youk, et al., Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma. Ann. Oncol. 28, 890–897 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  47. V. Bhandari, C. Hoey, L.Y. Liu, E. Lalonde, J. Ray, J. Livingstone, et al., Molecular landmarks of tumor hypoxia across cancer types. Nat Genet 51(2), 308–318 (2019)

    Article  CAS  PubMed  Google Scholar 

  48. V. Stambolic, A. Suzuki, J.L. de la Pompa, G.M. Brothers, C. Mirtsos, T. Sasaki, et al., Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998)

    Article  CAS  PubMed  Google Scholar 

  49. A.M. Mendes-Pereira, S.A. Martin, R. Brough, A. McCarthy, J.R. Taylor, J.S. Kim, et al., Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.D. Forster, K.J. Dedes, S. Sandhu, S. Frentzas, R. Kristeleit, A. Ashworth, et al., Treatment with olaparib in a patient with PTEN-deficient endometrioid endometrial cancer. Nat. Rev. Clin. Oncol. 8, 302–306 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. K.J. Dedes, D. Wetterskog, A.M. Mendes-Pereira, R. Natrajan, M.B. Lambros, F.C. Geyer, et al., PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci. Transl. Med. 2, 53ra75 (2010)

    Article  PubMed  CAS  Google Scholar 

  52. A. Gupta, Q. Yang, R.K. Pandita, C.R. Hunt, T. Xiang, S. Misri, et al., Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair. Cell Cycle 8, 2198–2210 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. B. McEllin, C.V. Camacho, B. Mukherjee, B. Hahm, N. Tomimatsu, R.M. Bachoo, et al., PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res. 70, 5457–5464 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Fraser, H. Zhao, K.R. Luoto, C. Lundin, C. Coackley, N. Chan, et al., PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin. Cancer Res. 18, 1015–1027 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. M. Zimmermann, O. Murina, M.A.M. Reijns, A. Agathanggelou, R. Challis, Z. Tarnauskaite, et al., CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S.M.G. Espiritu, L.Y. Liu, Y. Rubanova, V. Bhandari, E.M. Holgersen, L.M. Szyca, et al., The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173, 1003–13.e15 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. P.C. Boutros, M. Fraser, N.J. Harding, R. de Borja, D. Trudel, E. Lalonde, et al., Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. L. Burkhardt, S. Fuchs, A. Krohn, S. Masser, M. Mader, M. Kluth, et al., CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 73, 2795–2805 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. W. Gan, X. Dai, A. Lunardi, Z. Li, H. Inuzuka, P. Liu, et al., SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol. Cell 59, 917–930 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. An, S. Ren, S.J. Murphy, S. Dalangood, C. Chang, X. Pang, et al., Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. E. Muhlbradt, E. Asatiani, E. Ortner, A. Wang, E.P. Gelmann, NKX3.1 activates expression of insulin-like growth factor binding protein-3 to mediate insulin-like growth factor-I signaling and cell proliferation. Cancer Res. 69, 2615–2622 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. J.A. Locke, G. Zafarana, A.S. Ishkanian, M. Milosevic, J. Thoms, C.L. Have, et al., NKX3.1 haploinsufficiency is prognostic for prostate cancer relapse following surgery or image-guided radiotherapy. Clin. Cancer Res. 18, 308–316 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. G. Zafarana, A.S. Ishkanian, C.A. Malloff, J.A. Locke, J. Sykes, J. Thoms, et al., Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer 118, 4053–4062 (2012)

    Article  CAS  PubMed  Google Scholar 

  64. E. Castro, S. Jugurnauth-Little, Q. Karlsson, F. Al-Shahrour, E. Pineiro-Yanez, F. Van de Poll, et al., High burden of copy number alterations and c-MYC amplification in prostate cancer from BRCA2 germline mutation carriers. Ann. Oncol. 26, 2293–2300 (2015)

    Article  CAS  PubMed  Google Scholar 

  65. R.A. Taylor, M. Fraser, J. Livingstone, S.M. Espiritu, H. Thorne, V. Huang, et al., Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat. Commun. 8, 13671 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. G.P. Risbridger, R.A. Taylor, D. Clouston, A. Sliwinski, H. Thorne, S. Hunter, et al., Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur. Urol. 67, 496–503 (2015)

    Article  CAS  PubMed  Google Scholar 

  67. A. Berlin, E. Lalonde, J. Sykes, G. Zafarana, K.C. Chu, V.R. Ramnarine, et al., NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer. Oncotarget 5, 11081–11090 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  68. H. Guo, M. Ahmed, F. Zhang, C.Q. Yao, S. Li, Y. Liang, et al., Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat. Genet. 48, 1142–1150 (2016)

    Article  CAS  PubMed  Google Scholar 

  69. B. Le Tallec, G.A. Millot, M.E. Blin, O. Brison, B. Dutrillaux, M. Debatisse, Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep. 4, 420–428 (2013)

    Article  PubMed  CAS  Google Scholar 

  70. J.R. Prensner, W. Chen, S. Han, M.K. Iyer, Q. Cao, V. Kothari, et al., The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 16, 900–908 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. W. Zhang, B. Liu, W. Wu, L. Li, B.M. Broom, S.P. Basourakos, et al., Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer. Clin. Cancer Res. 24, 696–707 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. J.M. Mosquera, H. Beltran, K. Park, T.Y. MacDonald, B.D. Robinson, S.T. Tagawa, et al., Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J. Edwards, N.S. Krishna, C.J. Witton, J.M. Bartlett, Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin. Cancer Res. 9, 5271–5281 (2003)

    CAS  PubMed  Google Scholar 

  74. E. Lalonde, A.S. Ishkanian, J. Sykes, M. Fraser, H. Ross-Adams, N. Erho, et al., Tumor genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol. 15, 1521–1532 (2014)

    Article  PubMed  Google Scholar 

  75. H. Hieronymus, N. Schultz, A. Gopalan, B.S. Carver, M.T. Chang, Y. Xiao, et al., Copy number alteration burden predicts prostate cancer relapse. Proc. Natl. Acad. Sci. U. S. A. 111, 11139–11144 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. E. Lalonde, R. Alkallas, M.L. Chua, M. Fraser, S. Haider, A. Meng, et al., Translating a prognostic DNA genomic classifier into the clinic: retrospective validation in 563 localized prostate tumors. Eur. Urol. 72(1), 22–31 (2017)

    Article  CAS  PubMed  Google Scholar 

  77. W.P. Kloosterman, V. Guryev, M. van Roosmalen, K.J. Duran, E. de Bruijn, S.C. Bakker, et al., Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011)

    Article  CAS  PubMed  Google Scholar 

  78. P.J. Stephens, C.D. Greenman, B. Fu, F. Yang, G.R. Bignell, L.J. Mudie, et al., Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. S.K. Govind, A. Zia, P.H. Hennings-Yeomans, J.D. Watson, M. Fraser, C. Anghel, et al., ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinformatics 15, 78 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  80. J.R. Federer-Gsponer, C. Quintavalle, D.C. Muller, T. Dietsche, V. Perrina, T. Lorber, et al., Delineation of human prostate cancer evolution identifies chromothripsis as a polyclonal event and FKBP4 as a potential driver of castration resistance. J. Pathol. 245, 74–84 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. C. Wu, A.W. Wyatt, A. McPherson, D. Lin, B.J. McConeghy, F. Mo, et al., Poly-gene fusion transcripts and chromothripsis in prostate cancer. Genes Chromosomes Cancer 51, 1144–1153 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. D. Nava Rodrigues, P. Rescigno, D. Liu, W. Yuan, S. Carreira, M.B. Lambros, et al., Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J. Clin. Invest. 128, 4441–4453 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  83. T.A. Knijnenburg, L. Wang, M.T. Zimmermann, N. Chambwe, G.F. Gao, A.D. Cherniack, et al., Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 23, 239–54.e6 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Y.M. Wu, M. Cieslik, R.J. Lonigro, P. Vats, M.A. Reimers, X. Cao, et al., Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173, 1770–82.e14 (2018)

    Article  CAS  PubMed  Google Scholar 

  85. M. Noguchi, T.A. Stamey, J.E. McNeal, R. Nolley, Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J. Urol. 170, 459–463 (2003)

    Article  PubMed  Google Scholar 

  86. A.M. Wise, T.A. Stamey, J.E. McNeal, J.L. Clayton, Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 60, 264–269 (2002)

    Article  PubMed  Google Scholar 

  87. L. Wei, J. Wang, E. Lampert, S. Schlanger, A.D. DePriest, Q. Hu, et al., Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur. Urol. 71, 183–192 (2017)

    Article  CAS  PubMed  Google Scholar 

  88. D. Brocks, Y. Assenov, S. Minner, O. Bogatyrova, R. Simon, C. Koop, et al., Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep. 8, 798–806 (2014)

    Article  CAS  PubMed  Google Scholar 

  89. C.S. Cooper, R. Eeles, D.C. Wedge, P. Van Loo, G. Gundem, L.B. Alexandrov, et al., Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M. Lovf, S. Zhao, U. Axcrona, B. Johannessen, A.C. Bakken, K.T. Carm, et al., Multifocal primary prostate cancer exhibits high degree of genomic heterogeneity. Eur. Urol. 75(3), 498–505 (2019)

    Article  PubMed  CAS  Google Scholar 

  91. D. Nava Rodrigues, N. Casiraghi, A. Romanel, M. Crespo, S. Miranda, P. Rescigno, et al., RB1 heterogeneity in advanced metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25, 687–697 (2019)

    Article  PubMed  Google Scholar 

  92. M.C. Haffner, T. Mosbruger, D.M. Esopi, H. Fedor, C.M. Heaphy, D.A. Walker, et al., Tracking the clonal origin of lethal prostate cancer. J. Clin. Invest. 123, 4918–4922 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. G. Gundem, P. Van Loo, B. Kremeyer, L.B. Alexandrov, J.M. Tubio, E. Papaemmanuil, et al., The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. J. Kneppers, O. Krijgsman, M. Melis, J. de Jong, D.S. Peeper, E. Bekers, et al., Frequent clonal relations between metastases and non-index prostate cancer lesions. JCI Insight. 4, 124756 (2019)

    Article  PubMed  Google Scholar 

  95. S. Nik-Zainal, L.B. Alexandrov, D.C. Wedge, P. Van Loo, C.D. Greenman, K. Raine, et al., Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. C. Gerhauser, F. Favero, T. Risch, R. Simon, L. Feuerbach, Y. Assenov, et al., Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34, 996–1011.e8 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. A. McPherson, A. Roth, E. Laks, T. Masud, A. Bashashati, A.W. Zhang, et al., Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. A.W. Zhang, A. McPherson, K. Milne, D.R. Kroeger, P.T. Hamilton, A. Miranda, et al., Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–69.e22 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. C. Abbosh, N.J. Birkbak, G.A. Wilson, M. Jamal-Hanjani, T. Constantin, R. Salari, et al., Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. S. Roemeling, M.J. Roobol, S.H. de Vries, C. Gosselaar, T.H. van der Kwast, F.H. Schroder, Prevalence, treatment modalities and prognosis of familial prostate cancer in a screened population. J. Urol. 175, 1332–1336 (2006)

    Article  PubMed  Google Scholar 

  101. S. Kommu, S. Edwards, R. Eeles, The clinical genetics of prostate cancer. Hered. Cancer Clin. Pract. 2, 111–121 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  102. C. Breast Cancer Linkage, Cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 91, 1310–1316 (1999)

    Article  Google Scholar 

  103. C.C. Pritchard, J. Mateo, M.F. Walsh, N. De Sarkar, W. Abida, H. Beltran, et al., Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. L. Briollais, H. Ozcelik, J. Xu, M. Kwiatkowski, E. Lalonde, D.H. Sendorek, et al., Germline mutations in the Kallikrein 6 region and predisposition for aggressive prostate cancer. J. Natl. Cancer Inst. 109 (2017)

    Google Scholar 

  105. N.C. Turner, C.J. Lord, E. Iorns, R. Brough, S. Swift, R. Elliott, et al., A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. J. Mateo, S. Carreira, S. Sandhu, S. Miranda, H. Mossop, R. Perez-Lopez, et al., DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. T. Dadaev, E.J. Saunders, P.J. Newcombe, E. Anokian, D.A. Leongamornlert, M.N. Brook, et al., Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 9, 2256 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. F.R. Schumacher, A.A. Al Olama, S.I. Berndt, S. Benlloch, M. Ahmed, E.J. Saunders, et al., Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. P. Isaacsson Velho, J.L. Silberstein, M.C. Markowski, J. Luo, T.L. Lotan, W.B. Isaacs, et al., Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate 78, 401–407 (2018)

    Article  CAS  PubMed  Google Scholar 

  110. R. Bottcher, C.F. Kweldam, J. Livingstone, E. Lalonde, T.N. Yamaguchi, V. Huang, et al., Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer 18, 8 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. B.S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao, B.S. Carver, et al., Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. H. Hieronymus, R. Murali, A. Tin, K. Yadav, W. Abida, H. Moller, et al., Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. elife 7, e37294 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  113. M. Kluth, S. Harasimowicz, L. Burkhardt, K. Grupp, A. Krohn, K. Prien, et al., Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. Int. J. Cancer 135, 1369–1380 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. B. De Laere, S. Oeyen, M. Mayrhofer, T. Whitington, P.J. van Dam, P. Van Oyen, et al., TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25(6), 1766–1773 (2019)

    Article  PubMed  Google Scholar 

  115. M.K. Buyyounouski, T. Pickles, L.L. Kestin, R. Allison, S.G. Williams, Validating the interval to biochemical failure for the identification of potentially lethal prostate cancer. J. Clin. Oncol. 30, 1857–1863 (2012)

    Article  PubMed  Google Scholar 

  116. W.C. Jackson, K. Suresh, V. Tumati, S.G. Allen, R.T. Dess, S.S. Salami, et al., Intermediate endpoints after postprostatectomy radiotherapy: 5-year distant metastasis to predict overall survival. Eur. Urol. 74(4), 413–419 (2018)

    Article  PubMed  Google Scholar 

  117. E. Olkhov-Mitsel, F. Siadat, K. Kron, L. Liu, A.J. Savio, J. Trachtenberg, et al., Distinct DNA methylation alterations are associated with cribriform architecture and intraductal carcinoma in Gleason pattern 4 prostate tumors. Oncol. Lett. 14, 390–396 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. S.N. Kamdar, L.T. Ho, K.J. Kron, R. Isserlin, T. van der Kwast, A.R. Zlotta, et al., Dynamic interplay between locus-specific DNA methylation and hydroxymethylation regulates distinct biological pathways in prostate carcinogenesis. Clin. Epigenetics 8, 32 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. N.M. White-Al Habeeb, L.T. Ho, E. Olkhov-Mitsel, K. Kron, V. Pethe, M. Lehman, et al., Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer. Oncotarget 5, 7858–7869 (2014)

    PubMed  PubMed Central  Google Scholar 

  120. E. Olkhov-Mitsel, D. Zdravic, K. Kron, T. van der Kwast, N. Fleshner, B. Bapat, Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci. Rep. 4, 4432 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. K. Kron, D. Trudel, V. Pethe, L. Briollais, N. Fleshner, T. van der Kwast, et al., Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer. Clin. Cancer Res. 19, 3450–3461 (2013)

    Article  CAS  PubMed  Google Scholar 

  122. E. Olkhov-Mitsel, T. Van der Kwast, K.J. Kron, H. Ozcelik, L. Briollais, C. Massey, et al., Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics 7, 1037–1045 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. K. Kron, L. Liu, D. Trudel, V. Pethe, J. Trachtenberg, N. Fleshner, et al., Correlation of ERG expression and DNA methylation biomarkers with adverse clinicopathologic features of prostate cancer. Clin. Cancer Res. 18, 2896–2904 (2012)

    Article  CAS  PubMed  Google Scholar 

  124. L. Liu, K.J. Kron, V.V. Pethe, N. Demetrashvili, M.E. Nesbitt, J. Trachtenberg, et al., Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3 and RASSF1A with prostate cancer progression. Int. J. Cancer 129, 2454–2462 (2011)

    Article  CAS  PubMed  Google Scholar 

  125. K.J. Kron, L. Liu, V.V. Pethe, N. Demetrashvili, M.E. Nesbitt, J. Trachtenberg, et al., DNA methylation of HOXD3 as a marker of prostate cancer progression. Lab. Investig. 90, 1060–1067 (2010)

    Article  CAS  PubMed  Google Scholar 

  126. K. Kron, V. Pethe, L. Briollais, B. Sadikovic, H. Ozcelik, A. Sunderji, et al., Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One 4, e4830 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. G. Vandekerkhove, W.J. Struss, M. Annala, K. HML, D. Khalaf, E.W. Warner, et al., Circulating tumor DNA abundance and potential utility in de novo metastatic prostate cancer. Eur. Urol. 75(4), 667–675 (2019)

    Article  CAS  PubMed  Google Scholar 

  128. M. Annala, G. Vandekerkhove, D. Khalaf, S. Taavitsainen, K. Beja, E.W. Warner, et al., Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 8, 444–457 (2018)

    Article  CAS  PubMed  Google Scholar 

  129. E. Ritch, A.W. Wyatt, Predicting therapy response and resistance in metastatic prostate cancer with circulating tumor DNA. Urol. Oncol. 36, 380–384 (2018)

    Article  CAS  PubMed  Google Scholar 

  130. G. Vandekerkhove, K.N. Chi, A.W. Wyatt, Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genet. 228-229, 151–158 (2018)

    Article  CAS  PubMed  Google Scholar 

  131. N. Camacho, P. Van Loo, S. Edwards, J.D. Kay, L. Matthews, K. Haase, et al., Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 13, e1007001 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. F. Su, W. Zhang, D. Zhang, Y. Zhang, C. Pang, Y. Huang, et al., Spatial intratumor genomic heterogeneity within localized prostate cancer revealed by single-nucleus sequencing. Eur. Urol. 74(5), 551–559 (2018)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fraser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fraser, M., Rouette, A. (2019). Prostate Cancer Genomic Subtypes. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_5

Download citation

Publish with us

Policies and ethics