Skip to main content

Canonical and Noncanonical Androgen Metabolism and Activity

  • Chapter
  • First Online:
Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Androgens are critical drivers of prostate cancer. In this chapter we first discuss the canonical pathways of androgen metabolism and their alterations in prostate cancer progression, including the classical, backdoor and 5α-dione pathways, the role of pre-receptor DHT metabolism, and recent findings on oncogenic splicing of steroidogenic enzymes. Next, we discuss the activity and metabolism of non-canonical 11-oxygenated androgens that can activate wild-type AR and are less susceptible to glucuronidation and inactivation than the canonical androgens, thereby serving as an under-recognized reservoir of active ligands. We then discuss an emerging literature on the potential non-canonical role of androgen metabolizing enzymes in driving prostate cancer. We conclude by discussing the potential implications of these findings for prostate cancer progression, particularly in context of new agents such as abiraterone and enzalutamide, which target the AR-axis for prostate cancer therapy, including mechanisms of response and resistance and implications of these findings for future therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Geller, J. Albert, D. Loza, S. Geller, W. Stoeltzing, D. de la Vega, DHT concentrations in human prostate cancer tissue. J. Clin. Endocrinol. Metab. 46(3), 440–444 (1978)

    Article  CAS  PubMed  Google Scholar 

  2. J. Geller, J. Albert, S.S. Yen, S. Geller, D. Loza, Medical castration of males with megestrol acetate and small doses of diethylstilbestrol. J. Clin. Endocrinol. Metab. 52(3), 576–580 (1981)

    Article  CAS  PubMed  Google Scholar 

  3. J. Liu, J. Geller, J. Albert, M. Kirshner, Acute effects of testicular and adrenal cortical blockade on protein synthesis and dihydrotestosterone content of human prostate tissue. J. Clin. Endocrinol. Metab. 61(1), 129–133 (1985)

    Article  CAS  PubMed  Google Scholar 

  4. J. Liu, J. Albert, J. Geller, Effects of androgen blockade with ketoconazole and megestrol acetate on human prostatic protein patterns. Prostate 9(2), 199–205 (1986)

    Article  CAS  PubMed  Google Scholar 

  5. J. Geller, J. Albert, Effects of castration compared with total androgen blockade on tissue dihydrotestosterone (DHT) concentration in benign prostatic hyperplasia (BPH). Urol. Res. 15(3), 151–153 (1987)

    Article  CAS  PubMed  Google Scholar 

  6. J. Geller, J. Liu, J. Albert, W. Fay, C.C. Berry, P. Weis, Relationship between human prostatic epithelial cell protein synthesis and tissue dihydrotestosterone level. Clin. Endocrinol. (Oxf) 26(2), 155–161 (1987)

    Article  CAS  Google Scholar 

  7. F. Labrie, A. Dupont, A. Belanger, L. Cusan, Y. Lacourciere, G. Monfette, et al., New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin. Invest. Med. 5(4), 267–275 (1982)

    CAS  PubMed  Google Scholar 

  8. S.T. Page, D.W. Lin, E.A. Mostaghel, D.L. Hess, L.D. True, J.K. Amory, et al., Persistent intraprostatic androgen concentrations after medical castration in healthy men. J. Clin. Endocrinol. Metab. 91(10), 3850–3856 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. G. Forti, R. Salerno, G. Moneti, S. Zoppi, G. Fiorelli, T. Marinoni, et al., Three-month treatment with a long-acting gonadotropin-releasing hormone agonist of patients with benign prostatic hyperplasia: effects on tissue androgen concentration, 5 alpha-reductase activity and androgen receptor content. J. Clin. Endocrinol. Metab. 68(2), 461–468 (1989)

    Article  CAS  PubMed  Google Scholar 

  10. T. Nishiyama, Y. Hashimoto, K. Takahashi, The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin. Cancer Res. 10(21), 7121–7126 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. T. Nishiyama, T. Ikarashi, Y. Hashimoto, K. Wako, K. Takahashi, The change in the dihydrotestosterone level in the prostate before and after androgen deprivation therapy in connection with prostate cancer aggressiveness using the Gleason score. J. Urol. 178(4 Pt 1), 1282–1288 (2007). discussion 8-9

    Article  CAS  PubMed  Google Scholar 

  12. J.L. Mohler, C.W. Gregory, O.H. Ford 3rd, D. Kim, C.M. Weaver, P. Petrusz, et al., The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10(2), 440–448 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. R.B. Montgomery, E.A. Mostaghel, R. Vessella, D.L. Hess, T.F. Kalhorn, C.S. Higano, et al., Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68(11), 4447–4454 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. Mizokami, E. Koh, H. Fujita, Y. Maeda, M. Egawa, K. Koshida, et al., The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res. 64(2), 765–771 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. H. Miyamoto, S. Yeh, H. Lardy, E. Messing, C. Chang, Delta5-androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proc. Natl. Acad. Sci. U. S. A. 95(19), 11083–11088 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E.A. Mostaghel, P. Nelson, P.H. Lange, D.W. Lin, M. Taplin, S.P. Balk, et al., Neoadjuvant androgen pathway suppression prior to prostatectomy. J. Clin. Oncol. 30, 4520 (2012)

    Google Scholar 

  17. M.E. Taplin, B. Montgomery, C.J. Logothetis, G.J. Bubley, J.P. Richie, B.L. Dalkin, et al., Intense androgen-deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high-risk prostate cancer: results of a randomized phase II neoadjuvant study. J. Clin. Oncol. 32(33), 3705–3715 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Z. Culig, J. Hoffmann, M. Erdel, I.E. Eder, A. Hobisch, A. Hittmair, et al., Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br. J. Cancer 81(2), 242–251 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.W. Gregory, R.T. Johnson Jr., J.L. Mohler, F.S. French, E.M. Wilson, Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61(7), 2892–2898 (2001)

    CAS  PubMed  Google Scholar 

  20. C.W. Gregory, K.G. Hamil, D. Kim, S.H. Hall, T.G. Pretlow, J.L. Mohler, et al., Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res. 58(24), 5718–5724 (1998)

    CAS  PubMed  Google Scholar 

  21. J.L. Mohler, T.L. Morris, O.H. Ford 3rd, R.F. Alvey, C. Sakamoto, C.W. Gregory, Identification of differentially expressed genes associated with androgen-independent growth of prostate cancer. Prostate 51(4), 247–255 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. C.D. Chen, D.S. Welsbie, C. Tran, S.H. Baek, R. Chen, R. Vessella, et al., Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10(1), 33–39 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. E. Greenberg, Endocrine therapy in the management of prostatic cancer. Clin. Endocrinol. Metab. 9(2), 369–381 (1980)

    Article  CAS  PubMed  Google Scholar 

  24. M.R. Robinson, R.J. Shearer, J.D. Fergusson, Adrenal suppression in the treatment of carcinoma of the prostate. Br. J. Urol. 46(5), 555–559 (1974)

    Article  CAS  PubMed  Google Scholar 

  25. D.J. Samson, J. Seidenfeld, B. Schmitt, V. Hasselblad, P.C. Albertsen, C.L. Bennett, et al., Systematic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer 95(2), 361–376 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. B. Schmitt, C. Bennett, J. Seidenfeld, D. Samson, T. Wilt, Maximal androgen blockade for advanced prostate cancer. Cochrane Database Syst. Rev. 2, CD001526 (2000)

    Google Scholar 

  27. J.F. Caubet, T.D. Tosteson, E.W. Dong, E.M. Naylon, G.W. Whiting, M.S. Ernstoff, et al., Maximum androgen blockade in advanced prostate cancer: a meta-analysis of published randomized controlled trials using nonsteroidal antiandrogens. Urology 49(1), 71–78 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. E.J. Small, C.J. Ryan, The case for secondary hormonal therapies in the chemotherapy age. J. Urol. 176(6 Suppl 1), S66–S71 (2006). Innovations and Challenges in Prostate Cancer: Recommendations for Defining and Treating High Risk Disease. 2006;176(6, Supplement 1):S66-S71

    CAS  PubMed  Google Scholar 

  29. J. S. de Bono (ed.), Abiraterone acetate improves survival in metastatic castration-resistant prostate cancer: Phase III results (European Society for Medical Oncology, Milan, 2010)

    Google Scholar 

  30. H.I. Scher, T.M. Beer, C.S. Higano, A. Anand, M.E. Taplin, E. Efstathiou, et al., Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 375(9724), 1437–1446 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E.A. Mostaghel, B.T. Marck, S.R. Plymate, R.L. Vessella, S. Balk, A.M. Matsumoto, et al., Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17(18), 5913–5925 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. Cai, S. Chen, P. Ng, G.J. Bubley, P.S. Nelson, E.A. Mostaghel, et al., Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71(20), 6503–6513 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E. Efstathiou, M. Titus, D. Tsavachidou, V. Tzelepi, S. Wen, A. Hoang, et al., Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J. Clin. Oncol. 30(6), 637–643 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. M. Stanbrough, G.J. Bubley, K. Ross, T.R. Golub, M.A. Rubin, T.M. Penning, et al., Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66(5), 2815–2825 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. J. Holzbeierlein, P. Lal, E. LaTulippe, A. Smith, J. Satagopan, L. Zhang, et al., Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am. J. Pathol. 164(1), 217–227 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. W.L. Miller, R.J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32(1), 81–151 (2011)

    Article  PubMed  Google Scholar 

  37. W.E. Rainey, B.R. Carr, H. Sasano, T. Suzuki, J.I. Mason, Dissecting human adrenal androgen production. Trends Endocrinol. Metab. 13(6), 234–239 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. A. Endoh, S.B. Kristiansen, P.R. Casson, J.E. Buster, P.J. Hornsby, The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J. Clin. Endocrinol. Metab. 81(10), 3558–3565 (1996)

    CAS  PubMed  Google Scholar 

  39. Y. Nakamura, P.J. Hornsby, P. Casson, R. Morimoto, F. Satoh, Y. Xing, et al., Type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 94(6), 2192–2198 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E.J. Sanford, D.F. Paulson, T.J. Rohner Jr., R.J. Santen, C.W. Bardin, The effects of castration on adrenal testosterone secretion in men with prostatic carcinoma. J. Urol. 118(6), 1019–1021 (1977)

    Article  CAS  PubMed  Google Scholar 

  41. J. Rege, Y. Nakamura, F. Satoh, R. Morimoto, M.R. Kennedy, L.C. Layman, et al., Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J. Clin. Endocrinol. Metab. 98(3), 1182–1188 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A.C. Swart, L. Schloms, K.H. Storbeck, L.M. Bloem, T. Toit, J.L. Quanson, et al., 11beta-hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5alpha-reductase yielding 11beta-hydroxy-5alpha-androstanedione. J. Steroid Biochem. Mol. Biol. 138, 132–142 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. M. Barnard, J.L. Quanson, E. Mostaghel, E. Pretorius, J.L. Snoep, K.H. Storbeck, 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 183, 192–201 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. F. Labrie, V. Luu-The, S. Lin, J. Simard, C. Labrie, M. El-Alfy, et al., Intracrinology: role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J. Mol. Endocrinol. 25, 1):1–1)16 (2000)

    PubMed  Google Scholar 

  45. H. Klein, M. Bressel, H. Kastendieck, K.D. Voigt, Androgens, adrenal androgen precursors, and their metabolism in untreated primary tumors and lymph node metastases of human prostatic cancer. Am. J. Clin. Oncol. 11(Suppl 2), S30–S36 (1988)

    Article  PubMed  Google Scholar 

  46. Y. Nakamura, T. Suzuki, T. Fukuda, A. Ito, M. Endo, T. Moriya, et al., Steroid sulfatase and estrogen sulfotransferase in human prostate cancer. Prostate 66(9), 1005–1012 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. J.M. Day, A. Purohit, H.J. Tutill, P.A. Foster, L.W. Woo, B.V. Potter, et al., The development of steroid sulfatase inhibitors for hormone-dependent cancer therapy. Ann. N. Y. Acad. Sci. 1155, 80–87 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. V. Luu-The, A. Belanger, F. Labrie, Androgen biosynthetic pathways in the human prostate. Best Pract. Res. Clin. Endocrinol. Metab. 22(2), 207–221 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. K.M. Fung, E.N. Samara, C. Wong, A. Metwalli, R. Krlin, B. Bane, et al., Increased expression of type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. Endocr. Relat. Cancer 13(1), 169–180 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. T.M. Penning, D.R. Bauman, Y. Jin, T.L. Rizner, Identification of the molecular switch that regulates access of 5[alpha]-DHT to the androgen receptor. Mol. Cell. Endocrinol. 265-266(Adrenal/Molecular Steroidogenesis Conference 2006), 77–82 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. T.L. Rizner, H.K. Lin, D.M. Peehl, S. Steckelbroeck, D.R. Bauman, T.M. Penning, Human type 3 3{alpha}-hydroxysteroid dehydrogenase (aldo-keto reductase 1c2) and androgen metabolism in prostate cells. Endocrinology 144(7), 2922–2932 (2003). https://doi.org/10.1210/en.2002-0032

    Article  CAS  PubMed  Google Scholar 

  52. Q. Ji, L. Chang, D. VanDenBerg, F.Z. Stanczyk, A. Stolz, Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Prostate 54(4), 275–289 (2003)

    Article  CAS  PubMed  Google Scholar 

  53. Q. Ji, L. Chang, F.Z. Stanczyk, M. Ookhtens, A. Sherrod, A. Stolz, Impaired dihydrotestosterone catabolism in human prostate cancer: critical role of AKR1C2 as a pre-receptor regulator of androgen receptor signaling. Cancer Res. 67(3), 1361–1369 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. D.R. Bauman, S. Steckelbroeck, M.V. Williams, D.M. Peehl, T.M. Penning, Identification of the major oxidative 3{alpha}-hydroxysteroid dehydrogenase in human prostate that converts 5{alpha}-androstane-3{alpha},17{beta}-diol to 5{alpha}-dihydrotestosterone: a potential therapeutic target for androgen-dependent disease. Mol. Endocrinol. 20(2), 444–458 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. J.L. Mohler, M.A. Titus, S. Bai, B.J. Kennerley, F.B. Lih, K.B. Tomer, et al., Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res. 71(4), 1486–1496 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S. Muthusamy, S. Andersson, H.J. Kim, R. Butler, L. Waage, U. Bergerheim, et al., Estrogen receptor beta and 17beta-hydroxysteroid dehydrogenase type 6, a growth regulatory pathway that is lost in prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 108(50), 20090–20094 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  57. X.F. Huang, V. Luu-The, Molecular characterization of a first human 3(alpha-->beta)-hydroxysteroid epimerase. J. Biol. Chem. 275(38), 29452–29457 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. C. Guillemette, E. Levesque, M. Beaulieu, D. Turgeon, D.W. Hum, A. Belanger, Differential regulation of two uridine diphospho-glucuronosyltransferases, UGT2B15 and UGT2B17, in human prostate LNCaP cells. Endocrinology 138(7), 2998–3005 (1997)

    Article  CAS  PubMed  Google Scholar 

  59. S. Chouinard, O. Barbier, A. Belanger, UDP-glucuronosyltransferase 2B15 (UGT2B15) and UGT2B17 enzymes are major determinants of the androgen response in prostate cancer LNCaP cells. J. Biol. Chem. 282(46), 33466–33474 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. S. Chouinard, G. Pelletier, A. Belanger, O. Barbier, Cellular specific expression of the androgen-conjugating enzymes UGT2B15 and UGT2B17 in the human prostate epithelium. Endocr. Res. 30(4), 717–725 (2004)

    Article  CAS  PubMed  Google Scholar 

  61. Q. Wei, R. Galbenus, A. Raza, R.L. Cerny, M.A. Simpson, Androgen-stimulated UDP-glucose dehydrogenase expression limits prostate androgen availability without impacting hyaluronan levels. Cancer Res. 69(6), 2332–2339 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. R.J. Auchus, The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 15(9), 432–438 (2004)

    Article  CAS  PubMed  Google Scholar 

  63. R.J. Auchus, Non-traditional metabolic pathways of adrenal steroids. Rev. Endocr. Metab. Disord. 10(1), 27–32 (2009)

    Article  CAS  PubMed  Google Scholar 

  64. M.K. Gupta, O.L. Guryev, R.J. Auchus, 5alpha-reduced C21 steroids are substrates for human cytochrome P450c17. Arch. Biochem. Biophys. 418(2), 151–160 (2003)

    Article  CAS  PubMed  Google Scholar 

  65. M. Mahendroo, J.D. Wilson, J.A. Richardson, R.J. Auchus, Steroid 5alpha-reductase 1 promotes 5alpha-androstane-3alpha,17beta-diol synthesis in immature mouse testes by two pathways. Mol. Cell. Endocrinol. 222(1-2), 113–120 (2004)

    Article  CAS  PubMed  Google Scholar 

  66. K.H. Chang, R. Li, M. Papari-Zareei, L. Watumull, Y.D. Zhao, R.J. Auchus, et al., Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 108(33), 13728–13733 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  67. P. Negri-Cesi, M. Motta, Androgen metabolism in the human prostatic cancer cell line LNCaP. J. Steroid Biochem. Mol. Biol. 51(1-2), 89–96 (1994)

    Article  CAS  PubMed  Google Scholar 

  68. A.E. Thigpen, K.M. Cala, D.W. Russell, Characterization of Chinese hamster ovary cell lines expressing human steroid 5 alpha-reductase isozymes. J. Biol. Chem. 268(23), 17404–17412 (1993)

    CAS  PubMed  Google Scholar 

  69. M. Samson, F. Labrie, C.C. Zouboulis, Luu-The V. Biosynthesis of dihydrotestosterone by a pathway that does not require testosterone as an intermediate in the SZ95 sebaceous gland cell line. J. Invest. Dermatol. 130(2), 602–604 (2010)

    Article  CAS  PubMed  Google Scholar 

  70. H.-K. Lin, S. Steckelbroeck, K.-M. Fung, A.N. Jones, T.M. Penning, Characterization of a monoclonal antibody for human aldo-keto reductase AKR1C3 (type 2 3[alpha]-hydroxysteroid dehydrogenase/type 5 17[beta]-hydroxysteroid dehydrogenase); immunohistochemical detection in breast and prostate. Steroids 69(13-14), 795–801 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. J. Luo, T.A. Dunn, C.M. Ewing, P.C. Walsh, W.B. Isaacs, Decreased gene expression of steroid 5 alpha-reductase 2 in human prostate cancer: implications for finasteride therapy of prostate carcinoma. Prostate 57(2), 134–139 (2003)

    Article  CAS  PubMed  Google Scholar 

  72. M.A. Titus, C.W. Gregory, O.H. Ford III, M.J. Schell, S.J. Maygarden, J.L. Mohler, Steroid 5{alpha}-Reductase Isozymes I and II in Recurrent Prostate Cancer. Clin. Cancer Res. 11(12), 4365–4371 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. L.N. Thomas, R.C. Douglas, C.B. Lazier, R. Gupta, R.W. Norman, P.R. Murphy, et al., Levels of 5[alpha]-reductase type 1 and type 2 are increased in localized high grade compared to low grade prostate cancer. J. Urol. 179(1), 147–151 (2007). In Press, Corrected Proof

    Article  PubMed  Google Scholar 

  74. Y. Shibata, K. Suzuki, S. Arai, Y. Miyoshi, S. Umemoto, N. Masumori, et al., Impact of pre-treatment prostate tissue androgen content on the prediction of castration-resistant prostate cancer development in patients treated with primary androgen deprivation therapy. Andrology 1(3), 505–511 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. A. Godoy, E. Kawinski, Y. Li, D. Oka, B. Alexiev, F. Azzouni, et al., 5alpha-reductase type 3 expression in human benign and malignant tissues: a comparative analysis during prostate cancer progression. Prostate 71(10), 1033–1046 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. F. Azzouni, A. Godoy, Y. Li, J. Mohler, The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv. Urol. 2012, 530121 (2012)

    Article  PubMed  Google Scholar 

  77. E. Koh, T. Noda, J. Kanaya, M. Namiki, Differential expression of 17beta-hydroxysteroid dehydrogenase isozyme genes in prostate cancer and noncancer tissues. Prostate 53(2), 154–159 (2002)

    Article  CAS  PubMed  Google Scholar 

  78. J.P. Elo, L.A. Akinola, M. Poutanen, P. Vihko, A.P. Kyllonen, O. Lukkarinen, et al., Characterization of 17beta-hydroxysteroid dehydrogenase isoenzyme expression in benign and malignant human prostate. Int. J. Cancer 66(1), 37–41 (1996)

    Article  CAS  PubMed  Google Scholar 

  79. X. Gao, C. Dai, S. Huang, J. Tang, G. Chen, J. Li, Z. Zhu, X. Zhu, S. Zhou, Y. Gao, Z. Hou, Z. Fang, C. Xu, J. Wang, D. Wu, N. Sharifi, Z. Li, Functional silencing of HSD17B2 in prostate cancer promotes disease progression. Clin. Cancer Res. 25, 1291 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  80. S. Zha, S. Ferdinandusse, J.L. Hicks, S. Denis, T.A. Dunn, R.J. Wanders, et al., Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63(4), 316–323 (2005)

    Article  CAS  PubMed  Google Scholar 

  81. H.K. Ko, M. Berk, Y.M. Chung, B. Willard, R. Bareja, M. Rubin, et al., Loss of an androgen-inactivating and isoform-specific HSD17B4 splice form enables emergence of castration-resistant prostate cancer. Cell Rep. 22(3), 809–819 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. X.Y. He, Y.Z. Yang, D.M. Peehl, A. Lauderdale, H. Schulz, S.Y. Yang, Oxidative 3alpha-hydroxysteroid dehydrogenase activity of human type 10 17beta-hydroxysteroid dehydrogenase. J. Steroid Biochem. Mol. Biol. 87(2-3), 191–198 (2003)

    Article  CAS  PubMed  Google Scholar 

  83. C.N. Falany, D. He, N. Dumas, A.R. Frost, J.L. Falany, Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization. J. Steroid Biochem. Mol. Biol. 102(1-5), 214–221 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Y.K. Seo, N. Mirkheshti, C.S. Song, S. Kim, S. Dodds, S.C. Ahn, et al., SULT2B1b sulfotransferase: induction by vitamin D receptor and reduced expression in prostate cancer. Mol. Endocrinol. 27(6), 925–939 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. D. He, C.N. Falany, Inhibition of SULT2B1b expression alters effects of 3beta-hydroxysteroids on cell proliferation and steroid hormone receptor expression in human LNCaP prostate cancer cells. Prostate 67(12), 1318–1329 (2007)

    Article  CAS  PubMed  Google Scholar 

  86. N.C. Bennett, J.D. Hooper, D. Lambie, C.S. Lee, T. Yang, D.A. Vesey, et al., Evidence for steroidogenic potential in human prostate cell lines and tissues. Am. J. Pathol. 181(3), 1078–1087 (2012)

    Article  CAS  PubMed  Google Scholar 

  87. A. Stigliano, O. Gandini, L. Cerquetti, P. Gazzaniga, S. Misiti, S. Monti, et al., Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer. J. Endocrinol. 194(1), 55–61 (2007)

    Article  CAS  PubMed  Google Scholar 

  88. M. Sakai, D.B. Martinez-Arguelles, A.G. Aprikian, A.M. Magliocco, V. Papadopoulos, De novo steroid biosynthesis in human prostate cell lines and biopsies. Prostate 76(6), 575–587 (2016)

    Article  CAS  PubMed  Google Scholar 

  89. E. Neubauer, M. Latif, J. Krause, A. Heumann, M. Armbrust, C. Luehr, et al., Up regulation of the steroid hormone synthesis regulator HSD3B2 is linked to early PSA recurrence in prostate cancer. Exp. Mol. Pathol. 105(1), 50–56 (2018)

    Article  CAS  PubMed  Google Scholar 

  90. S. Paquet, L. Fazli, L. Grosse, M. Verreault, B. Tetu, P.S. Rennie, et al., Differential expression of the androgen-conjugating UGT2B15 and UGT2B17 enzymes in prostate tumor cells during cancer progression. J. Clin. Endocrinol. Metab. 97(3), E428–E432 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. J. Hofland, W.M. van Weerden, N.F. Dits, J. Steenbergen, G.J. van Leenders, G. Jenster, et al., Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res. 70(3), 1256–1264 (2010)

    Article  CAS  PubMed  Google Scholar 

  92. N. Mitsiades, C.C. Sung, N. Schultz, D.C. Danila, B. He, V.K. Eedunuri, et al., Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res. 72(23), 6142–6152 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Y. Liu, Z.X. Yao, V. Papadopoulos, Cytochrome P450 17alpha hydroxylase/17,20 lyase (CYP17) function in cholesterol biosynthesis: identification of squalene monooxygenase (epoxidase) activity associated with CYP17 in Leydig cells. Mol. Endocrinol. 19(7), 1918–1931 (2005)

    Article  CAS  PubMed  Google Scholar 

  94. M. Yepuru, Z. Wu, A. Kulkarni, F. Yin, C.M. Barrett, J. Kim, et al., Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth. Clin. Cancer Res. 19, 5613 (2013)

    Article  CAS  PubMed  Google Scholar 

  95. K. Chang, R. Li, K. B, Y. Lotan, C. Roehrborn, J. Liu, et al., A gain-of-function mutation in DHTSynthesis in castration resistant prostate cancer. Cell 154, 1074–1084 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. A. Paschalis, A. Sharp, J.C. Welti, A. Neeb, G.V. Raj, J. Luo, et al., Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15(11), 663–675 (2018)

    Article  CAS  PubMed  Google Scholar 

  97. C. Sette, Alternative splicing programs in prostate cancer. Int. J. Cell Biol. 2013, 458727 (2013)

    PubMed  PubMed Central  Google Scholar 

  98. J. Luo, G. Attard, S.P. Balk, C. Bevan, K. Burnstein, L. Cato, et al., Role of androgen receptor variants in prostate cancer: report from the 2017 mission androgen receptor variants meeting. Eur. Urol. 73, 715 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  99. D.A. Bastos, E.S. Antonarakis, CTC-derived AR-V7 detection as a prognostic and predictive biomarker in advanced prostate cancer. Expert Rev. Mol. Diagn. 18(2), 155–163 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. N. Bruchovsky, Comparison of the metabolites formed in rat prostate following the in vivo administration of seven natural androgens. Endocrinology 89(5), 1212–1222 (1971)

    Article  CAS  PubMed  Google Scholar 

  101. C. Labrie, J. Simard, H.F. Zhao, A. Belanger, G. Pelletier, F. Labrie, Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 124(6), 2745–2754 (1989)

    Article  CAS  PubMed  Google Scholar 

  102. C.D. Schiller, M.R. Schneider, H. Hartmann, A.H. Graf, H. Klocker, G. Bartsch, Growth-stimulating effect of adrenal androgens on the R3327 Dunning prostatic carcinoma. Urol. Res. 19(1), 7–13 (1991)

    Article  CAS  PubMed  Google Scholar 

  103. M.E. Harper, A. Pike, W.B. Peeling, K. Griffiths, Steroids of adrenal origin metabolized by human prostatic tissue both in vivo and in vitro. J. Endocrinol. 60(1), 117–125 (1974)

    Article  CAS  PubMed  Google Scholar 

  104. K. Mitamura, T. Nakagawa, K. Shimada, M. Namiki, E. Koh, A. Mizokami, et al., Identification of dehydroepiandrosterone metabolites formed from human prostate homogenate using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. J. Chromatogr. A 961(1), 97–105 (2002)

    Article  CAS  PubMed  Google Scholar 

  105. H.F. Acevedo, J.W. Goldzieher, The metabolism of [4-14C] progesterone by hypertrophic and carcinomatous human prostate tissue. Biochim. Biophys. Acta 111(1), 294–298 (1965)

    Article  CAS  PubMed  Google Scholar 

  106. F. Di Silverio, V. Gagliardi, G. Sorcini, F. Sciarra, Biosynthesis and metabolism of androgenic hormones in cancer of the prostate. Invest. Urol. 13(4), 286–288 (1976)

    PubMed  Google Scholar 

  107. H. Klein, T. Molwitz, W. Bartsch, Steroid sulfate sulfatase in human benign prostatic hyperplasia: characterization and quantification of the enzyme in epithelium and stroma. J. Steroid Biochem. 33(2), 195–200 (1989)

    Article  CAS  PubMed  Google Scholar 

  108. C. Dai, Y.M. Chung, E. Kovac, Z. Zhu, J. Li, C. Magi-Galluzzi, et al., Direct metabolic interrogation of dihydrotestosterone biosynthesis from adrenal precursors in primary prostatectomy tissues. Clin. Cancer Res. 23(20), 6351–6362 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. E. Koh, J. Kanaya, M. Namiki, Adrenal steroids in human prostatic cancer cell lines. Arch. Androl. 46(2), 117–125 (2001)

    Article  CAS  PubMed  Google Scholar 

  110. E.H. Allott, E.M. Masko, A.R. Freedland, E. Macias, K. Pelton, K.R. Solomon, et al., Serum cholesterol levels and tumor growth in a PTEN-null transgenic mouse model of prostate cancer. Prostate Cancer Prostatic Dis. 21(2), 196–203 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. E.A. Mostaghel, K.R. Solomon, K. Pelton, M.R. Freeman, R.B. Montgomery, Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors. PLoS One 7(1), e30062 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. C.G. Leon, J.A. Locke, H.H. Adomat, S.L. Etinger, A.L. Twiddy, R.D. Neumann, et al., Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 70(4), 390–400 (2009)

    Google Scholar 

  113. J.A. Locke, E.S. Guns, A.A. Lubik, H.H. Adomat, S.C. Hendy, C.A. Wood, et al., Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68(15), 6407–6415 (2008)

    Article  CAS  PubMed  Google Scholar 

  114. A.A. Lubik, J.H. Gunter, S.C. Hendy, J.A. Locke, H.H. Adomat, V. Thompson, et al., Insulin increases de novo steroidogenesis in prostate cancer cells. Cancer Res. 71, 5754 (2011)

    Article  CAS  PubMed  Google Scholar 

  115. M. Knuuttila, E. Yatkin, J. Kallio, S. Savolainen, T.D. Laajala, T. Aittokallio, et al., Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model. Am. J. Pathol. 184(8), 2163–2173 (2014)

    Article  CAS  PubMed  Google Scholar 

  116. E.A. Mostaghel, A. Zhang, S. Hernandez, B.T. Marck, X. Zhang, D. Tamae, et al., Contribution of adrenal glands to intratumor androgens and growth of castration-resistant prostate cancer. Clin. Cancer Res. 25(1), 426–439 (2019)

    Article  PubMed  Google Scholar 

  117. R. Huhtaniemi, R. Oksala, M. Knuuttila, A. Mehmood, E. Aho, T.D. Laajala, et al., Adrenals contribute to growth of castration-resistant VCaP prostate cancer xenografts. Am. J. Pathol. 188(12), 2890–2901 (2018)

    Article  CAS  PubMed  Google Scholar 

  118. P.R. Dillard, M.F. Lin, S.A. Khan, Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol. Cell. Endocrinol. 295(1-2), 115–120 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. J.A. Locke, K.M. Wasan, C.C. Nelson, E.S. Guns, C.G. Leon, Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT). Prostate 68(1), 20–33 (2008)

    Article  CAS  PubMed  Google Scholar 

  120. J.A. Locke, C.C. Nelson, H.H. Adomat, S.C. Hendy, M.E. Gleave, E.S. Guns, Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J. Steroid Biochem. Mol. Biol. 115, 126 (2009)

    Article  CAS  PubMed  Google Scholar 

  121. C.W. Jeong, C.Y. Yoon, S.J. Jeong, S.K. Hong, S.S. Byun, S.E. Lee, Limited expression of cytochrome p450 17alpha-hydroxylase/17,20-lyase in prostate cancer cell lines. Korean J. Urol. 52(7), 494–497 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  122. J. Kumagai, J. Hofland, S. Erkens-Schulze, N.F. Dits, J. Steenbergen, G. Jenster, et al., Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis. Prostate 73, 1636 (2013)

    CAS  PubMed  Google Scholar 

  123. S. Deb, S. Pham, D.S. Ming, M.Y. Chin, H. Adomat, A. Hurtado-Coll, et al., Characterization of precursor-dependent steroidogenesis in human prostate cancer models. Cancers 10(10), E343 (2018)

    Article  CAS  PubMed  Google Scholar 

  124. A.G.G. de Mello Martins, G. Allegretta, G. Unteregger, J. Haupenthal, J. Eberhard, M. Hoffmann, et al., CYP17A1-independent production of the neurosteroid-derived 5alpha-pregnan-3beta,6alpha-diol-20-one in androgen-responsive prostate cancer cell lines under serum starvation and inhibition by Abiraterone. J. Steroid Biochem. Mol. Biol. 174, 183–191 (2017)

    Article  CAS  PubMed  Google Scholar 

  125. J.Y. Chun, N. Nadiminty, S. Dutt, W. Lou, J.C. Yang, H.J. Kung, et al., Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin. Cancer Res. 15(15), 4815–4822 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. A.A. Lubik, J.H. Gunter, B.G. Hollier, S. Ettinger, L. Fazli, N. Stylianou, et al., IGF2 increases de novo steroidogenesis in prostate cancer cells. Endocr. Relat. Cancer 20(2), 173–186 (2013)

    Article  CAS  PubMed  Google Scholar 

  127. S.V. Liu, A.V. Schally, D. Hawes, S. Xiong, L. Fazli, M. Gleave, et al., Expression of receptors for luteinizing hormone-releasing hormone (LH-RH) in prostate cancers following therapy with LH-RH agonists. Clin. Cancer Res. 16(18), 4675–4680 (2010)

    Article  CAS  PubMed  Google Scholar 

  128. J.K. Pinski, S. Xiong, Q. Wang, F. Stanczyk, S. Liu, Effect of luteinizing hormone on the steroid biosynthesis pathway in prostate cancer. 2010 Genitourinary Cancers Symposium 2010

    Google Scholar 

  129. L. Xiao, Y. Wang, K. Xu, H. Hu, Z. Xu, D. Wu, et al., Nuclear receptor LRH-1 functions to promote castration-resistant growth of prostate cancer via its promotion of intratumoral androgen biosynthesis. Cancer Res. 78(9), 2205–2218 (2018)

    Article  CAS  PubMed  Google Scholar 

  130. F.W. Buaas, J.R. Gardiner, S. Clayton, P. Val, A. Swain, In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland. Development 139(24), 4561–4570 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. S.R. Lewis, C.J. Hedman, T. Ziegler, W.A. Ricke, J.S. Jorgensen, Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology 155(2), 358–369 (2014)

    Article  CAS  PubMed  Google Scholar 

  132. P.R. Braadland, H.H. Grytli, H. Ramberg, B. Katz, R. Kellman, L. Gauthier-Landry, et al., Low beta(2)-adrenergic receptor level may promote development of castration resistant prostate cancer and altered steroid metabolism. Oncotarget 7(2), 1878–1894 (2016)

    Article  PubMed  Google Scholar 

  133. D. Patel, A.E. Knowell, M. Korang-Yeboah, P. Sharma, J. Joshi, S. Glymph, et al., Inhibitor of differentiation 4 (ID4) inactivation promotes de novo steroidogenesis and castration-resistant prostate cancer. Mol. Endocrinol. 28(8), 1239–1253 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. H. Ramberg, T. Eide, K.A. Krobert, F.O. Levy, N. Dizeyi, A.S. Bjartell, et al., Hormonal regulation of beta2-adrenergic receptor level in prostate cancer. Prostate 68(10), 1133–1142 (2008)

    Article  CAS  PubMed  Google Scholar 

  135. J.B. Joshi, D. Patel, D.J. Morton, P. Sharma, J. Zou, D. Hewa Bostanthirige, et al., Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52. Mol. Oncol. 11(4), 337–357 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. T. Migita, K.I. Takayama, T. Urano, D. Obinata, K. Ikeda, T. Soga, et al., ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci. 108(10), 2011–2021 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. J.T. Arnold, N.E. Gray, K. Jacobowitz, L. Viswanathan, P.W. Cheung, K.K. McFann, et al., Human prostate stromal cells stimulate increased PSA production in DHEA-treated prostate cancer epithelial cells. J. Steroid Biochem. Mol. Biol. 111(3-5), 240–246 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. A. Mizokami, E. Koh, K. Izumi, K. Narimoto, M. Takeda, S. Honma, et al., Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone. Endocr. Relat. Cancer 16(4), 1139–1155 (2009)

    Article  CAS  PubMed  Google Scholar 

  139. T. Sillat, R. Pöllänen, J.R. Lopes, P. Porola, G. Ma, M. Korhonen, et al., Intracrine androgenic apparatus in human bone marrow stromal cells. J. Cell. Mol. Med. 13(9B), 3296–3302 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  140. I. Finco, C.R. LaPensee, K.T. Krill, G.D. Hammer, Hedgehog signaling and steroidogenesis. Annu. Rev. Physiol. 77, 105–129 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. E. Levina, M. Chen, R. Carkner, M. Shtutman, R. Buttyan, Paracrine Hedgehog increases the steroidogenic potential of prostate stromal cells in a Gli-dependent manner. Prostate 72(8), 817–824 (2012)

    Article  CAS  PubMed  Google Scholar 

  142. A.A. Lubik, M. Nouri, S. Truong, M. Ghaffari, H.H. Adomat, E. Corey, et al., Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment. Int. J. Cancer 140(2), 358–369 (2017)

    Article  CAS  PubMed  Google Scholar 

  143. E. Jernberg, E. Thysell, E. Bovinder Ylitalo, S. Rudolfsson, S. Crnalic, A. Widmark, et al., Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants. PLoS One 8(11), e77407 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. M. Hagberg Thulin, M.E. Nilsson, P. Thulin, J. Ceraline, C. Ohlsson, J.E. Damber, et al., Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol. Cell. Endocrinol. 422, 182–191 (2016)

    Article  CAS  PubMed  Google Scholar 

  145. M.C. Diaz-Franco, R. Franco-Diaz de Leon, J.R. Villafan-Bernal, OsteocalcinGPRC6A: An update of its clinical and biological multiorganic interactions (Review). Mol. Med. Rep. 19(1), 15–22 (2019)

    CAS  PubMed  Google Scholar 

  146. S.C. Moser, B.C.J. van der Eerden, Osteocalcin-A versatile bone-derived hormone. Front. Endocrinol. 9, 794 (2018)

    Article  Google Scholar 

  147. L. De Toni, A. Di Nisio, M.S. Rocca, M. De Rocco Ponce, A. Ferlin, C. Foresta, Osteocalcin, a bone-derived hormone with important andrological implications. Andrology 5(4), 664–670 (2017)

    Article  CAS  PubMed  Google Scholar 

  148. F. Oury, M. Ferron, W. Huizhen, C. Confavreux, L. Xu, J. Lacombe, et al., Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J. Clin. Invest. 123(6), 2421–2433 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. G. Karsenty, F. Oury, Regulation of male fertility by the bone-derived hormone osteocalcin. Mol. Cell. Endocrinol. 382(1), 521–526 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. P. Thomas, Membrane androgen receptors unrelated to nuclear steroid receptors. Endocrinology 160, 772 (2019)

    Article  PubMed  Google Scholar 

  151. M. Pi, L.D. Quarles, GPRC6A regulates prostate cancer progression. Prostate 72(4), 399–409 (2012)

    Article  CAS  PubMed  Google Scholar 

  152. Q.Z. Long, Y.F. Du, X.Y. Ding, X. Li, W.B. Song, Y. Yang, et al., Replication and fine mapping for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in the Chinese population. PLoS One 7(5), e37866 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. R. Ye, M. Pi, J.V. Cox, S.K. Nishimoto, L.D. Quarles, CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J. Exp. Clin. Cancer Res. 36(1), 90 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Y. Yang, Y. Bai, Y. He, Y. Zhao, J. Chen, L. Ma, et al., PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin. Cancer Res. 24(4), 834–846 (2018)

    Article  CAS  PubMed  Google Scholar 

  155. W.C. Huang, Z. Xie, H. Konaka, J. Sodek, H.E. Zhau, L.W. Chung, Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res. 65(6), 2303–2313 (2005)

    Article  CAS  PubMed  Google Scholar 

  156. M. Hagberg Thulin, K. Jennbacken, J.E. Damber, K. Welen, Osteoblasts stimulate the osteogenic and metastatic progression of castration-resistant prostate cancer in a novel model for in vitro and in vivo studies. Clin. Exp. Metastasis 31(3), 269–283 (2014)

    Article  CAS  PubMed  Google Scholar 

  157. M.W. O'Reilly, P. Kempegowda, C. Jenkinson, A.E. Taylor, J.L. Quanson, K.H. Storbeck, et al., 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102(3), 840–848 (2017)

    PubMed  Google Scholar 

  158. E. Pretorius, W. Arlt, K.H. Storbeck, A new dawn for androgens: Novel lessons from 11-oxygenated C19 steroids. Mol. Cell. Endocrinol. 441, 76–85 (2017)

    Article  CAS  PubMed  Google Scholar 

  159. A.T. Nanba, J. Rege, J. Ren, R.J. Auchus, W.E. Rainey, A.F. Turcu, 11-Oxygenated C19 steroids do not decline with age in women. J. Clin. Endocrinol. Metab. 104, 2615 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  160. J.W. Goldzieher, A. de la Pena, M.M. Aivaliotis, Radioimmunoassay of plasma androstenedione, testosterone and 11beta-hydroxyandrostenedione after chromatography on Lipidex-5000 (hydroxyalkoxypropyl Sephadex). J. Steroid Biochem. 9(2), 169–173 (1978)

    Article  CAS  PubMed  Google Scholar 

  161. Y. Xing, M.A. Edwards, C. Ahlem, M. Kennedy, A. Cohen, C.E. Gomez-Sanchez, et al., The effects of ACTH on steroid metabolomic profiles in human adrenal cells. J. Endocrinol. 209(3), 327–335 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. L. Schloms, K.H. Storbeck, P. Swart, W.C. Gelderblom, A.C. Swart, The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells. J. Steroid Biochem. Mol. Biol. 128(3-5), 128–138 (2012)

    Article  CAS  PubMed  Google Scholar 

  163. A.F. Turcu, A.T. Nanba, R. Chomic, S.K. Upadhyay, T.J. Giordano, J.J. Shields, et al., Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur. J. Endocrinol. 174(5), 601–609 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  164. K.H. Storbeck, L.M. Bloem, D. Africander, L. Schloms, P. Swart, A.C. Swart, 11beta-Hydroxydihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic activity: a putative role in castration resistant prostate cancer? Mol. Cell. Endocrinol. 377(1-2), 135–146 (2013)

    Article  CAS  PubMed  Google Scholar 

  165. P.J. Robinson, R.J. Bell, S.R. Davis, A.F. Turcu, Exogenous testosterone does not influence 11-oxygenated C19 steroid concentrations in healthy postmenopausal women. J. Endoc. Soc. 3(3), 670–677 (2019)

    Article  CAS  Google Scholar 

  166. C. Campana, J. Rege, A.F. Turcu, V. Pezzi, C.E. Gomez-Sanchez, D.M. Robins, et al., Development of a novel cell based androgen screening model. J. Steroid Biochem. Mol. Biol. 156, 17–22 (2016)

    Article  CAS  PubMed  Google Scholar 

  167. E. Pretorius, D.J. Africander, M. Vlok, M.S. Perkins, J. Quanson, K.H. Storbeck, 11-Ketotestosterone and 11-ketodihydrotestosterone in castration resistant prostate cancer: potent androgens which can no longer be ignored. PLoS One 11(7), e0159867 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. A. Dovio, M.L. Sartori, S. De Francia, S. Mussino, P. Perotti, L. Saba, et al., Differential expression of determinants of glucocorticoid sensitivity in androgen-dependent and androgen-independent human prostate cancer cell lines. J. Steroid Biochem. Mol. Biol. 116(1-2), 29–36 (2009)

    Article  CAS  PubMed  Google Scholar 

  169. N. Page, N. Warriar, M.V. Govindan, 11 beta-Hydroxysteroid dehydrogenase and tissue specificity of androgen action in human prostate cancer cell LNCaP. J. Steroid Biochem. Mol. Biol. 49(2-3), 173–181 (1994)

    Article  CAS  PubMed  Google Scholar 

  170. G. Pelletier, V. Luu-The, S. Li, J. Ouellet, F. Labrie, Cellular localization of mRNA expression of enzymes involved in the formation and inactivation of hormonal steroids in the mouse prostate. J. Histochem. Cytochem. 52(10), 1351–1356 (2004). https://doi.org/10.1369/jhc.4A6311.2004

    Article  CAS  PubMed  Google Scholar 

  171. A.L. Albiston, V.R. Obeyesekere, R.E. Smith, Z.S. Krozowski, Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol. Cell. Endocrinol. 105(2), R11–R17 (1994)

    Article  CAS  PubMed  Google Scholar 

  172. T. du Toit, L.M. Bloem, J.L. Quanson, R. Ehlers, A.M. Serafin, A.C. Swart, Profiling adrenal 11beta-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC(2)-MS/MS quantification of 11beta-hydroxytestosterone, 11keto-testosterone and 11keto-dihydrotestosterone. J. Steroid Biochem. Mol. Biol. 166, 54–67 (2017)

    Article  CAS  PubMed  Google Scholar 

  173. T. du Toit, A.C. Swart, Inefficient UGT-conjugation of adrenal 11beta-hydroxyandrostenedione metabolites highlights C11-oxy C19 steroids as the predominant androgens in prostate cancer. Mol. Cell. Endocrinol. 461, 265 (2017)

    Article  CAS  PubMed  Google Scholar 

  174. C.J. Ryan, M.R. Smith, L. Fong, J.E. Rosenberg, P. Kantoff, F. Raynaud, et al., Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol. 28(9), 1481–1488 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. G. Attard, A.H. Reid, T.A. Yap, F. Raynaud, M. Dowsett, S. Settatree, et al., Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26(28), 4563–4571 (2008)

    Article  CAS  PubMed  Google Scholar 

  176. E. Cho, E.A. Mostaghel, K.J. Russell, J.J. Liao, M.A. Konodi, B.F. Kurland, et al., External beam radiation therapy and abiraterone in men with localized prostate cancer: safety and effect on tissue androgens. Int. J. Radiat. Oncol. Biol. Phys. 92(2), 236–243 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. S. Gao, H. Ye, S. Gerrin, H. Wang, A. Sharma, S. Chen, et al., ErbB2 signaling increases androgen receptor expression in abiraterone-resistant prostate cancer. Clin. Cancer Res. 22(14), 3672–3682 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. H.M. Lam, R. McMullin, H.M. Nguyen, I. Coleman, M. Gormley, R. Gulati, et al., Characterization of an abiraterone ultraresponsive phenotype in castration-resistant prostate cancer patient-derived xenografts. Clin. Cancer Res. 23(9), 2301–2312 (2017)

    Article  CAS  PubMed  Google Scholar 

  179. Z. Yu, S. Chen, A.G. Sowalsky, O.S. Voznesensky, E.A. Mostaghel, P.S. Nelson, et al., Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer. Clin. Cancer Res. 20(6), 1590–1600 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. W. Kim, L. Zhang, J.H. Wilton, G. Fetterly, J.L. Mohler, V. Weinberg, et al., Sequential use of the androgen synthesis inhibitors ketoconazole and abiraterone acetate in castration-resistant prostate cancer and the predictive value of circulating androgens. Clin. Cancer Res. 20(24), 6269–6276 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. C.J. Ryan, A. Molina, J. Li, T. Kheoh, E.J. Small, C.M. Haqq, et al., Serum androgens as prognostic biomarkers in castration-resistant prostate cancer: results from an analysis of a randomized phase III trial. J. Clin. Oncol. 31(22), 2791–2798 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. C.J. Ryan, W. Peng, T. Kheoh, E. Welkowsky, C.M. Haqq, D.W. Chandler, et al., Androgen dynamics and serum PSA in patients treated with abiraterone acetate. Prostate Cancer Prostatic Dis. 17(2), 192–198 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. D. Tamae, E. Mostaghel, B. Montgomery, P.S. Nelson, S.P. Balk, P.W. Kantoff, et al., The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer. Chem. Biol. Interact. 234, 332–338 (2015)

    Article  CAS  PubMed  Google Scholar 

  184. E.S. Antonarakis, C. Lu, B. Luber, H. Wang, Y. Chen, Y. Zhu, et al., Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J. Clin. Oncol. 35(19), 2149–2156 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. M. Kohli, Y. Ho, D.W. Hillman, J.L. Van Etten, C. Henzler, R. Yang, et al., Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res. 23(16), 4704–4715 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. M. Nakazawa, C. Lu, Y. Chen, C.J. Paller, M.A. Carducci, M.A. Eisenberger, et al., Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann. Oncol. 26(9), 1859–1865 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. E.J. Chen, A.G. Sowalsky, S. Gao, C. Cai, O. Voznesensky, R. Schaefer, et al., Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin. Cancer Res. 21(6), 1273–1280 (2015)

    Article  CAS  PubMed  Google Scholar 

  188. Z. Li, A.C. Bishop, M. Alyamani, J.A. Garcia, R. Dreicer, D. Bunch, et al., Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 523(7560), 347–351 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Z. Li, M. Alyamani, J. Li, K. Rogacki, M. Abazeed, S.K. Upadhyay, et al., Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature 533(7604), 547–551 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. M. Alyamani, Z. Li, M. Berk, J. Li, J. Tang, S. Upadhyay, et al., Steroidogenic metabolism of galeterone reveals a diversity of biochemical activities. Cell Chem. Biol. 24(7), 825–32.e6 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. J.W. Mueller, L.C. Gilligan, J. Idkowiak, W. Arlt, P.A. Foster, The regulation of steroid action by sulfation and desulfation. Endocr. Rev. 36(5), 526–563 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. B.V.L. Potter, SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. J. Mol. Endocrinol. 61(2), T233–Tt52 (2018)

    Article  PubMed  Google Scholar 

  193. S. Denmeade, D. George, G. Liu, C. Peraire, A. Geniaux, F. Baton, et al., A phase I pharmacodynamics dose escalation study of steroid sulphatase inhibitor Irosustat in patients with prostate cancer. Eur. J. Cancer 47, S499 (2011)

    Article  Google Scholar 

  194. E.A. Mostaghel, Abiraterone in the treatment of metastatic castration-resistant prostate cancer. Cancer Manag. Res. 6, 39–51 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. H.I. Scher, K. Fizazi, F. Saad, M.E. Taplin, C.N. Sternberg, K. Miller, et al., Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367(13), 1187–1197 (2012)

    Article  CAS  PubMed  Google Scholar 

  196. R.S. Ge, Q. Dong, E.M. Niu, C.M. Sottas, D.O. Hardy, J.F. Catterall, et al., 11{beta}-Hydroxysteroid dehydrogenase 2 in rat leydig cells: its role in blunting glucocorticoid action at physiological levels of substrate. Endocrinology 146(6), 2657–2664 (2005)

    Article  CAS  PubMed  Google Scholar 

  197. S.A. Latif, H.A. Pardo, M.P. Hardy, D.J. Morris, Endogenous selective inhibitors of 11beta-hydroxysteroid dehydrogenase isoforms 1 and 2 of adrenal origin. Mol. Cell. Endocrinol. 243(1-2), 43–50 (2005)

    Article  CAS  PubMed  Google Scholar 

  198. F.B. Coeli, L.F. Ferraz, S.H. Lemos-Marini, S.Z. Rigatto, V.M. Belangero, M.P. de-Mello, Apparent mineralocorticoid excess syndrome in a Brazilian boy caused by the homozygous missense mutation p.R186C in the HSD11B2 gene. Arq. Bras. Endocrinol. Metabol. 52(8), 1277–1281 (2008)

    Article  PubMed  Google Scholar 

  199. J. Li, M. Alyamani, A. Zhang, K.H. Chang, M. Berk, Z. Li, et al., Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife 6, e20183 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  200. Q. Hu, C. Jagusch, U.E. Hille, J. Haupenthal, R.W. Hartmann, Replacement of imidazolyl by pyridyl in biphenylmethylenes results in selective CYP17 and dual CYP17/CYP11B1 inhibitors for the treatment of prostate cancer. J. Med. Chem. 53(15), 5749–5758 (2010)

    Article  CAS  PubMed  Google Scholar 

  201. M.A. Pinto-Bazurco Mendieta, Q. Hu, M. Engel, R.W. Hartmann, Highly potent and selective nonsteroidal dual inhibitors of CYP17/CYP11B2 for the treatment of prostate cancer to reduce risks of cardiovascular diseases. J. Med. Chem. 56(15), 6101–6107 (2013)

    Article  CAS  PubMed  Google Scholar 

  202. A.O. Adeniji, M. Chen, T.M. Penning, AKR1C3 as a target in castrate resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 137, 136–149 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. T.M. Penning, AKR1C3 (type 5 17beta-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol. Cell. Endocrinol. 489, 82 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. C. Liu, W. Lou, Y. Zhu, J.C. Yang, N. Nadiminty, N.W. Gaikwad, et al., Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res. 75(7), 1413–1422 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. C. Liu, C.M. Armstrong, W. Lou, A. Lombard, C.P. Evans, A.C. Gao, Inhibition of AKR1C3 activation overcomes resistance to abiraterone in advanced prostate cancer. Mol. Cancer Ther. 16(1), 35–44 (2017)

    Article  CAS  PubMed  Google Scholar 

  206. T.M. Penning, M.E. Burczynski, J.M. Jez, C.F. Hung, H.K. Lin, H. Ma, et al., Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J. 351(Pt 1), 67–77 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  207. T.M. Penning, Aldo-Keto reductase (AKR) 1C3 inhibitors: a patent review. Expert Opin. Ther. Pat. 27(12), 1329–1340 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. A.J. Liedtke, A.O. Adeniji, M. Chen, M.C. Byrns, Y. Jin, D.W. Christianson, et al., Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (Type 5 17beta-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J. Med. Chem. 56(6), 2429–2446 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. A.L. Lovering, J.P. Ride, C.M. Bunce, J.C. Desmond, S.M. Cummings, S.A. White, Crystal structures of prostaglandin D(2) 11-ketoreductase (AKR1C3) in complex with the nonsteroidal anti-inflammatory drugs flufenamic acid and indomethacin. Cancer Res. 64(5), 1802–1810 (2004)

    Article  CAS  PubMed  Google Scholar 

  210. A.C. Pippione, A. Giraudo, D. Bonanni, I.M. Carnovale, E. Marini, C. Cena, et al., Hydroxytriazole derivatives as potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors discovered by bioisosteric scaffold hopping approach. Eur. J. Med. Chem. 139, 936–946 (2017)

    Article  CAS  PubMed  Google Scholar 

  211. A.C. Pippione, I.M. Carnovale, D. Bonanni, M. Sini, P. Goyal, E. Marini, et al., Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a bioisosteric scaffold hopping approach to flufenamic acid. Eur. J. Med. Chem. 150, 930–945 (2018)

    Article  CAS  PubMed  Google Scholar 

  212. K. Verma, N. Gupta, T. Zang, P. Wangtrakluldee, S.K. Srivastava, T.M. Penning, et al., AKR1C3 inhibitor KV-37 exhibits antineoplastic effects and potentiates enzalutamide in combination therapy in prostate adenocarcinoma cells. Mol. Cancer Ther. 17(9), 1833–1845 (2018)

    Article  CAS  PubMed  Google Scholar 

  213. P. Wangtrakuldee, A.O. Adeniji, T. Zang, L. Duan, B. Khatri, B.M. Twenter, et al., A 3-(4-nitronaphthen-1-yl) amino-benzoate analog as a bifunctional AKR1C3 inhibitor and AR antagonist: Head to head comparison with other advanced AKR1C3 targeted therapeutics. J. Steroid Biochem. Mol. Biol. 192, 105283 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. D. Robinson, E.M. Van Allen, Y.M. Wu, N. Schultz, R.J. Lonigro, J.M. Mosquera, et al., Integrative clinical genomics of advanced prostate cancer. Cell 161(5), 1215–1228 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. H.H. Cheng, N. Klemfuss, B. Montgomery, C.S. Higano, M.T. Schweizer, E.A. Mostaghel, et al., A pilot study of clinical targeted next generation sequencing for prostate cancer: consequences for treatment and genetic counseling. Prostate 76(14), 1303–1311 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. C.C. Pritchard, J. Mateo, M.F. Walsh, N. De Sarkar, W. Abida, H. Beltran, et al., Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375(5), 443–453 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. P. Nuhn, J.S. De Bono, K. Fizazi, S.J. Freedland, M. Grilli, P.W. Kantoff, et al., Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur. Urol. 75(1), 88–99 (2019)

    Article  PubMed  Google Scholar 

  218. A.W. Hahn, D.M. Gill, R.H. Nussenzveig, A. Poole, J. Farnham, L. Cannon-Albright, et al., Germline variant in HSD3B1 (1245 A > C) and response to abiraterone acetate plus prednisone in men with new-onset metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 16(4), 288–292 (2018)

    Article  PubMed  Google Scholar 

  219. M. Alyamani, H. Emamekhoo, S. Park, J. Taylor, N. Almassi, S. Upadhyay, et al., HSD3B1(1245A>C) variant regulates dueling abiraterone metabolite effects in prostate cancer. J. Clin. Invest. 128(8), 3333–3340 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  220. N. Almassi, C. Reichard, J. Li, C. Russell, J. Perry, C.J. Ryan, et al., HSD3B1 and response to a nonsteroidal CYP17A1 inhibitor in castration-resistant prostate cancer. JAMA Oncol. 4(4), 554–557 (2018)

    Article  PubMed  Google Scholar 

  221. A.W. Hahn, D.M. Gill, A. Poole, R.H. Nussenzveig, S. Wilson, J.M. Farnham, et al., Germline variant in SLCO2B1 and response to abiraterone acetate plus prednisone (AA) in new-onset metastatic castration-resistant prostate cancer (mCRPC). Mol. Cancer Ther. 18(3), 726–729 (2019)

    Article  CAS  PubMed  Google Scholar 

  222. E.A. Mostaghel, E. Cho, A. Zhang, M. Alyamani, A. Kaipainen, S. Green, et al., Association of tissue abiraterone levels and SLCO genotype with intraprostatic steroids and pathologic response in men with high-risk localized prostate cancer. Clin. Cancer Res. 23(16), 4592–4601 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. A. Romanel, D. Gasi Tandefelt, V. Conteduca, A. Jayaram, N. Casiraghi, D. Wetterskog, et al., Plasma AR and abiraterone-resistant prostate cancer. Sci. Transl. Med. 7(312), 312re10 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. V. Conteduca, D. Wetterskog, M.T.A. Sharabiani, E. Grande, M.P. Fernandez-Perez, A. Jayaram, et al., Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Annals of oncology: official journal of the European Society for. Med. Oncol. 28(7), 1508–1516 (2017)

    Google Scholar 

  225. M. Annala, G. Vandekerkhove, D. Khalaf, S. Taavitsainen, K. Beja, E.W. Warner, et al., Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 8(4), 444–457 (2018)

    Article  CAS  PubMed  Google Scholar 

  226. B. De Laere, S. Oeyen, M. Mayrhofer, T. Whitington, P.J. van Dam, P. Van Oyen, et al., TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25(6), 1766–1773 (2019)

    Article  PubMed  Google Scholar 

  227. B.L. Maughan, L.B. Guedes, K. Boucher, G. Rajoria, Z. Liu, S. Klimek, et al., p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 21(2), 260–268 (2018)

    Article  CAS  PubMed  Google Scholar 

  228. R. Ferraldeschi, D. Nava Rodrigues, R. Riisnaes, S. Miranda, I. Figueiredo, P. Rescigno, et al., PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur. Urol. 67(4), 795–802 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. G. Boysen, D.N. Rodrigues, P. Rescigno, G. Seed, D. Dolling, R. Riisnaes, et al., SPOP-Mutated/CHD1-deleted lethal prostate cancer and abiraterone sensitivity. Clin. Cancer Res. 24(22), 5585–5593 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  230. E. Cho, R.B. Montgomery, E.A. Mostaghel, Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology 155(11), 4124–4132 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. X. Wang, L.C. Harshman, W. Xie, M. Nakabayashi, F. Qu, M.M. Pomerantz, et al., Association of SLCO2B1 genotypes with time to progression and overall survival in patients receiving androgen-deprivation therapy for prostate cancer. J. Clin. Oncol. 34(4), 352–359 (2016)

    Article  CAS  PubMed  Google Scholar 

  232. T. Terakawa, E. Katsuta, L. Yan, N. Turaga, K.-A. McDonald, M. Fujisawa, et al., High expression of SLCO2B1 is associated with prostate cancer recurrence after radical prostatectomy. Oncotarget 9, 14207 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  233. M. Yang, W. Xie, E. Mostaghel, M. Nakabayashi, L. Werner, T. Sun, et al., SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 29(18), 2565–2573 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. J.W.D. Hearn, G. AbuAli, C.A. Reichard, C.A. Reddy, C. Magi-Galluzzi, K.H. Chang, et al., HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet Oncol. 17(10), 1435–1444 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. J.W.D. Hearn, W. Xie, M. Nakabayashi, N. Almassi, C.A. Reichard, M. Pomerantz, et al., Association of HSD3B1 genotype with response to androgen-deprivation therapy for biochemical recurrence after radiotherapy for localized prostate cancer. JAMA Oncol. 4(4), 558–562 (2018)

    Article  PubMed  Google Scholar 

  236. G. Wu, S. Huang, K.L. Nastiuk, J. Li, J. Gu, M. Wu, et al., Variant allele of HSD3B1 increases progression to castration-resistant prostate cancer. Prostate 75(7), 777–782 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. D. Hettel, N. Sharifi, HSD3B1 status as a biomarker of androgen deprivation resistance and implications for prostate cancer. Nat. Rev. Urol. 15(3), 191–196 (2018)

    Article  CAS  PubMed  Google Scholar 

  238. K.A. Jung, B.H. Choi, C.W. Nam, M. Song, S.T. Kim, J.Y. Lee, et al., Identification of aldo-keto reductases as NRF2-target marker genes in human cells. Toxicol. Lett. 218(1), 39–49 (2013)

    Article  CAS  PubMed  Google Scholar 

  239. M.E. Burczynski, G.R. Sridhar, N.T. Palackal, T.M. Penning, The reactive oxygen species--and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha,beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J. Biol. Chem. 276(4), 2890–2897 (2001)

    Article  CAS  PubMed  Google Scholar 

  240. K. Matsuura, H. Shiraishi, A. Hara, K. Sato, Y. Deyashiki, M. Ninomiya, et al., Identification of a principal mRNA species for human 3alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J. Biochem. 124(5), 940–946 (1998)

    Article  CAS  PubMed  Google Scholar 

  241. T.M. Penning, M.C. Byrns, Steroid hormone transforming aldo-keto reductases and cancer. Ann. N. Y. Acad. Sci. 1155, 33–42 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. K.H. Huang, S.H. Chiou, K.C. Chow, T.Y. Lin, H.W. Chang, I.P. Chiang, et al., Overexpression of aldo-keto reductase 1C2 is associated with disease progression in patients with prostatic cancer. Histopathology 57(3), 384–394 (2010)

    Article  PubMed  Google Scholar 

  243. L. Fan, G. Peng, A. Hussain, L. Fazli, E. Guns, M. Gleave, et al., The steroidogenic enzyme AKR1C3 regulates stability of the ubiquitin ligase siah2 in prostate cancer cells. J. Biol. Chem. 290(34), 20865–20879 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. C.L. Doig, S. Battaglia, F.L. Khanim, C.M. Bunce, M.J. Campbell, Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells. J. Steroid Biochem. Mol. Biol. 155(Pt A), 47–55 (2016)

    Article  CAS  PubMed  Google Scholar 

  245. H. Li, N. Xie, R. Chen, M. Verreault, L. Fazli, M.E. Gleave, et al., UGT2B17 expedites progression of castration-resistant prostate cancers by promoting ligand-independent AR signaling. Cancer Res. 76(22), 6701–6711 (2016)

    Article  CAS  PubMed  Google Scholar 

  246. M. Gruber, J. Bellemare, G. Hoermann, A. Gleiss, E. Porpaczy, M. Bilban, et al., Overexpression of uridine diphospho glucuronosyltransferase 2B17 in high-risk chronic lymphocytic leukemia. Blood 121(7), 1175–1183 (2013)

    Article  CAS  PubMed  Google Scholar 

  247. H. Hirata, Y. Hinoda, M.S. Zaman, Y. Chen, K. Ueno, S. Majid, et al., Function of UDP-glucuronosyltransferase 2B17 (UGT2B17) is involved in endometrial cancer. Carcinogenesis 31(9), 1620–1626 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. L. Gauthier-Landry, A. Belanger, O. Barbier, Multiple roles for UDP-glucuronosyltransferase (UGT)2B15 and UGT2B17 enzymes in androgen metabolism and prostate cancer evolution. J. Steroid Biochem. Mol. Biol. 145, 187–192 (2015)

    Article  CAS  PubMed  Google Scholar 

  249. B.Y. Bao, B.F. Chuang, Q. Wang, O. Sartor, S.P. Balk, M. Brown, et al., Androgen receptor mediates the expression of UDP-glucuronosyltransferase 2 B15 and B17 genes. Prostate 68(8), 839–848 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. K. Evaul, R. Li, M. Papari-Zareei, R.J. Auchus, N. Sharifi, 3beta-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer. Endocrinology 151(8), 3514–3520 (2010)

    Article  CAS  PubMed  Google Scholar 

  251. R. Li, K. Evaul, K.K. Sharma, K.H. Chang, J. Yoshimoto, J. Liu, et al., Abiraterone inhibits 3beta-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin. Cancer Res. 18(13), 3571–3579 (2012)

    Article  CAS  PubMed  Google Scholar 

  252. J. Richards, A.C. Lim, C.W. Hay, A.E. Taylor, A. Wingate, K. Nowakowska, et al., Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72(9), 2176–2182 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. T.W. Friedlander, J.N. Graff, K. Zejnullahu, A. Anantharaman, L. Zhang, R. Paz, et al., High-dose abiraterone acetate in men with castration resistant prostate cancer. Clin. Genitourin. Cancer 15(6), 733–41 e1 (2017)

    Article  PubMed  Google Scholar 

  254. R.Z. Szmulewitz, C.J. Peer, A. Ibraheem, E. Martinez, M.F. Kozloff, B. Carthon, et al., Prospective international randomized phase II study of low-dose abiraterone with food versus standard dose abiraterone in castration-resistant prostate cancer. J. Clin. Oncol. 36(14), 1389–1395 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Y.C. Yang, C.A. Banuelos, N.R. Mawji, J. Wang, M. Kato, S. Haile, et al., Targeting androgen receptor activation function-1 with EPI to overcome resistance mechanisms in castration-resistant prostate cancer. Clin. Cancer Res. 22(17), 4466–4477 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. J.K. Myung, C.A. Banuelos, J.G. Fernandez, N.R. Mawji, J. Wang, A.H. Tien, et al., An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest. 123(7), 2948–2960 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. E. Antonopoulou, M. Ladomery, Targeting splicing in prostate cancer. Int. J. Mol. Sci. 19(5), 1287 (2018)

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

NIH Pacific Northwest Prostate Cancer SPORE P50 CA97186

NIH P01 CA163227

Department of Defense CDMRP W81XWH-12-1-0208

Department of Veterans Affairs Puget Sound Health Care System

Damon Runyon Cancer Research Foundation (Damon Runyon-Genentech Clinical Investigator Award CI-40-08).

National Research Foundation of South Africa (CPRR 98886)

Medical Research Council of South Africa

Department of Defense CDMRP W81XWH-11-2-0154

Department of Defense CDMRP W81XWH-15-1-0150

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe A. Mostaghel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Storbeck, KH., Mostaghel, E.A. (2019). Canonical and Noncanonical Androgen Metabolism and Activity. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_11

Download citation

Publish with us

Policies and ethics