Skip to main content

Apoptosis and Male Infertility

  • Chapter
  • First Online:
Male Infertility

Abstract

Male infertility is a widespread problem; approximately in one in five infertile couples, the problem lies solely in the male partner. The pathogenesis of male infertility can be reflected by defective spermatogenesis due to pituitary disorders, testicular cancer, germ cell aplasia, varicocele, and environmental factors or due to defective sperm transport resulting from congenital abnormalities or immunological or neurological factors. Recent findings have shown that male infertility increases due to exposure to environmental toxicants that leads to abnormal apoptosis of either germ cells or Sertoli cells. Some of the environmental contaminants have the ability to interfere with natural hormones and have been shown to induce programmed cell death. Apoptosis, also known as programmed cell death (PCD), is an important phenomenon required for normal spermatogenesis in mammals and is believed to ensure cellular homeostasis. Under normal conditions, an adequate number of germ cells are eliminated via the process of apoptosis in order to maintain a precise germ cell population is compliance with the supportive capacity of the Sertoli cells. This chapter briefs both physiological and pathological events that can trigger apoptosis and their effects on the male reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winters BR, Walsh TJ. The epidemiology of male infertility. Urol Clin North Am. 2014;41(1):195–204.

    Article  PubMed  Google Scholar 

  2. Nene UA, Coyaji K, Apte H. Infertility: a label of choice in the case of sexually dysfunctional couples. Patient Educ Couns. 2005;59(3):234–8.

    Article  PubMed  Google Scholar 

  3. Larsen U. Infertility in Central Africa. Tropical Med Int Health. 2003;8(4):354–67.

    Article  Google Scholar 

  4. Larsen U, Menken J. Individual-level sterility: a new method of estimation with application to sub-Saharan Africa. Demography. 1991;28(2):229–47.

    Article  CAS  PubMed  Google Scholar 

  5. Saez JM, et al. Cell-cell communication in the testis. Horm Res. 1991;36(3-4):104–15.

    Article  CAS  PubMed  Google Scholar 

  6. McLachlan RI, et al. Effects of testosterone on spermatogenic cell populations in the adult rat. Biol Reprod. 1994;51(5):945–55.

    Article  CAS  PubMed  Google Scholar 

  7. Zapata JM, et al. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem. 2001;276(26):24242–52.

    Article  CAS  PubMed  Google Scholar 

  8. Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun. 2003;304(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  9. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol. 1997;34(4 Suppl 5):9–19.

    CAS  PubMed  Google Scholar 

  10. Saradha B, Vaithinathan S, Mathur PP. Lindane induces testicular apoptosis in adult Wistar rats through the involvement of Fas-FasL and mitochondria-dependent pathways. Toxicology. 2009;255(3):131–9.

    Article  CAS  PubMed  Google Scholar 

  11. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635–6.

    Article  CAS  PubMed  Google Scholar 

  12. Knudson CM, et al. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270(5233):96–9.

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe-Fukunaga R, et al. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356(6367):314–7.

    Article  CAS  PubMed  Google Scholar 

  14. Nagata S, Golstein P. The Fas death factor. Science. 1995;267(5203):1449–56.

    Article  CAS  PubMed  Google Scholar 

  15. Suda T, et al. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169–78.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka M, et al. Downregulation of Fas ligand by shedding. Nat Med. 1998;4(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sinha Hikim AP, et al. Deciphering the pathways of germ cell apoptosis in the testis. J Steroid Biochem Mol Biol. 2003;85(2-5):175–82.

    Article  CAS  PubMed  Google Scholar 

  18. Philchenkov AA. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc). 2003;68(4):365–76.

    Article  CAS  Google Scholar 

  19. Pentikainen V, Erkkila K, Dunkel L. Fas regulates germ cell apoptosis in the human testis in vitro. Am J Phys. 1999;276(2 Pt 1):E310–6.

    CAS  Google Scholar 

  20. Francavilla S, et al. Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J Clin Endocrinol Metab. 2000;85(8):2692–700.

    Article  CAS  PubMed  Google Scholar 

  21. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–6.

    Article  CAS  PubMed  Google Scholar 

  22. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6(11):1028–42.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(Pt 1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.

    Article  CAS  PubMed  Google Scholar 

  25. Rojas FJ, Brush M, Moretti-Rojas I. Calpain-calpastatin: a novel, complete calcium-dependent protease system in human spermatozoa. Mol Hum Reprod. 1999;5(6):520–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.

    Article  CAS  PubMed  Google Scholar 

  27. Budihardjo I, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  CAS  PubMed  Google Scholar 

  28. Delfino F, Walker WH. Stage-specific nuclear expression of NF-kappaB in mammalian testis. Mol Endocrinol. 1998;12(11):1696–707.

    CAS  PubMed  Google Scholar 

  29. Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene. 1999;18(49):6867–74.

    Article  CAS  PubMed  Google Scholar 

  30. Huleihel M, Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl. 2004;6(3):259–68.

    CAS  PubMed  Google Scholar 

  31. Murugesan P, et al. Effects of polychlorinated biphenyl (Aroclor 1254) on steroidogenesis and antioxidant system in cultured adult rat Leydig cells. J Endocrinol. 2007;192(2):325–38.

    Article  CAS  PubMed  Google Scholar 

  32. Yang JM, et al. Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod Toxicol. 2003;17(5):553–60.

    Article  CAS  PubMed  Google Scholar 

  33. Gao HB, et al. Mechanisms of glucocorticoid-induced Leydig cell apoptosis. Mol Cell Endocrinol. 2003;199(1-2):153–63.

    Article  CAS  PubMed  Google Scholar 

  34. Print CG, Loveland KL. Germ cell suicide: new insights into apoptosis during spermatogenesis. BioEssays. 2000;22(5):423–30.

    Article  CAS  PubMed  Google Scholar 

  35. Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992;25(3):241–50.

    Article  CAS  PubMed  Google Scholar 

  36. Lin WW, et al. In situ end-labeling of human testicular tissue demonstrates increased apoptosis in conditions of abnormal spermatogenesis. Fertil Steril. 1997;68(6):1065–9.

    Article  CAS  PubMed  Google Scholar 

  37. Blanchard TL, Johnson L. Increased germ cell degeneration and reduced germ cell:Sertoli cell ratio in stallions with low sperm production. Theriogenology. 1997;47(3):665–77.

    Article  CAS  PubMed  Google Scholar 

  38. Tebourbi O, Rhouma KB, Sakly M. DDT induces apoptosis in rat thymocytes. Bull Environ Contam Toxicol. 1998;61(2):216–23.

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Maldonado IN, et al. DDT induces apoptosis in human mononuclear cells in vitro and is associated with increased apoptosis in exposed children. Environ Res. 2004;94(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  40. Shi Y, et al. p, p’-DDE induces apoptosis of rat Sertoli cells via a FasL-dependent pathway. J Biomed Biotechnol. 2009;2009:181282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ichimura T, Kawamura M, Mitani A. Co-localized expression of FasL, Fas, Caspase-3 and apoptotic DNA fragmentation in mouse testis after oral exposure to di(2-ethylhexyl)phthalate. Toxicology. 2003;194(1-2):35–42.

    Article  CAS  PubMed  Google Scholar 

  42. Giammona CJ, et al. Death receptor response in rodent testis after mono-(2-ethylhexyl) phthalate exposure. Toxicol Appl Pharmacol. 2002;185(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  43. Shi Y, et al. beta-Benzene hexachloride induces apoptosis of rat Sertoli cells through generation of reactive oxygen species and activation of JNKs and FasL. Environ Toxicol. 2011;26(2):124–35.

    Article  CAS  PubMed  Google Scholar 

  44. Vaithinathan S, Saradha B, Mathur PP. Methoxychlor induces apoptosis via mitochondria- and FasL-mediated pathways in adult rat testis. Chem Biol Interact. 2010;185(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  45. Anway MD, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    Article  CAS  PubMed  Google Scholar 

  46. Cupp AS, et al. Effect of transient embryonic in vivo exposure to the endocrine disruptor methoxychlor on embryonic and postnatal testis development. J Androl. 2003;24(5):736–45.

    Article  CAS  PubMed  Google Scholar 

  47. Li YJ, et al. Bisphenol a exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci. 2009;108(2):427–36.

    Article  CAS  PubMed  Google Scholar 

  48. Lee J, et al. The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology. 1999;140(2):852–8.

    Article  CAS  PubMed  Google Scholar 

  49. Peltola V, Huhtaniemi I, Ahotupa M. Antioxidant enzyme activity in the maturing rat testis. J Androl. 1992;13(5):450–5.

    CAS  PubMed  Google Scholar 

  50. Abdollahi M, et al. Pesticides and oxidative stress: a review. Med Sci Monit. 2004;10(6):RA141–7.

    CAS  PubMed  Google Scholar 

  51. Saradha B, Mathur PP. Effect of environmental contaminants on male reproduction. Environ Toxicol Pharmacol. 2006;21(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  52. Samanta L, Roy A, Chainy GB. Changes in rat testicular antioxidant defence profile as a function of age and its impairment by hexachlorocyclohexane during critical stages of maturation. Andrologia. 1999;31(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  53. Doreswamy K, et al. Nickel-induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects. J Androl. 2004;25(6):996–1003.

    Article  CAS  PubMed  Google Scholar 

  54. Sujatha R, et al. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats. Asian J Androl. 2001;3(2):135–8.

    CAS  PubMed  Google Scholar 

  55. Saradha B, Vaithinathan S, Mathur PP. Lindane alters the levels of HSP70 and clusterin in adult rat testis. Toxicology. 2008;243(1–2):116–23.

    Article  CAS  PubMed  Google Scholar 

  56. Kasahara E, et al. Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J. 2002;365(Pt 3):849–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li D, Yin D, Han X. Methyl tert-butyl ether (MTBE)-induced cytotoxicity and oxidative stress in isolated rat spermatogenic cells. J Appl Toxicol. 2007;27(1):10–7.

    Article  PubMed  CAS  Google Scholar 

  58. Tay TW, et al. Phagocytosis plays an important role in clearing dead cells caused by mono(2-ethylhexyl) phthalate administration. Tissue Cell. 2007;39(4):241–6.

    Article  CAS  PubMed  Google Scholar 

  59. Gong Y, Han XD. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells. Reprod Toxicol. 2006;22(4):623–30.

    Article  CAS  PubMed  Google Scholar 

  60. Qian J, et al. Octylphenol induces apoptosis in cultured rat Sertoli cells. Toxicol Lett. 2006;166(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  61. Sen Gupta R, et al. Vitamin C and vitamin E protect the rat testes from cadmium-induced reactive oxygen species. Mol Cells. 2004;17(1):132–9.

    CAS  PubMed  Google Scholar 

  62. Zamzami N, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995;182(2):367–77.

    Article  CAS  PubMed  Google Scholar 

  63. Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995;5(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  64. Kohler C, et al. Protease activation in apoptosis induced by MAL. Exp Cell Res. 1999;249(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  65. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309–12.

    Article  CAS  PubMed  Google Scholar 

  66. Tripathi P, Hildeman D. Sensitization of T cells to apoptosis—a role for ROS? Apoptosis. 2004;9(5):515–23.

    Article  CAS  PubMed  Google Scholar 

  67. Krammer PH. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol. 1999;71:163–210.

    Article  CAS  PubMed  Google Scholar 

  68. Scaffidi C, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanchez-Gomez MV, et al. Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J Neurosci. 2003;23(29):9519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Henkler F, et al. The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J Cell Biol. 2005;168(7):1087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897–907.

    Article  CAS  PubMed  Google Scholar 

  72. Um HD, Orenstein JM, Wahl SM. Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway. J Immunol. 1996;156(9):3469–77.

    CAS  PubMed  Google Scholar 

  73. Chiba T, et al. Fas-mediated apoptosis is modulated by intracellular glutathione in human T cells. Eur J Immunol. 1996;26(5):1164–9.

    Article  CAS  PubMed  Google Scholar 

  74. Chainy GB, Samantaray S, Samanta L. Testosterone-induced changes in testicular antioxidant system. Andrologia. 1997;29(6):343–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

P. P. Mathur acknowledges the receipt of financial support from the Department of Science and Technology, Government of India, under the projects (1) SP/SO/B-65/99, (2) DST-FIST-2009.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latchoumycandane, C., Vaithinathan, S., D’Cruz, S.C., Mathur, P.P. (2020). Apoptosis and Male Infertility. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics