Skip to main content

Physical Activity and Endurance Training Modalities: Evidences and Perspectives

  • Chapter
  • First Online:
Rehabilitation interventions in the patient with obesity
  • 767 Accesses

Abstract

In this chapter, the main body of evidences related to the role and recommendations of daily physical activity and endurance training in weight management program has been reported. Firstly, we show that the promotion of daily physical activity in any forms and accumulated in a minimum of 10-min bouts during the day should be encouraged using and promoting options for the environments in which individuals may elect to engage in physical activity. Secondly, the two main endurance training modalities (i.e., moderate-intensity continuous and high-intensity interval trainings) and their effects for improving aerobic and metabolic fitness and health levels have been described. The literature’s findings show that these two types of training should be considered two complementary training tools in individuals with obesity. Finally, normobaric hypoxic training and noninvasive ventilation during exercise may be promising and useful methods to increase adherence and variation of interventions and to optimize training effects. Some practical and evidence-based recommendations to prescribe endurance training in this population are also presented. Health professionals should concomitantly use daily physical activity and structured endurance exercise training in weight management programs aiming to prevent and treat obesity. They should also advise individuals with obesity that the obtained health benefits can be reached at any body mass and are unrelated to body mass change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collaboration NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–96. https://doi.org/10.1016/S0140-6736(16)30054-X.

    Article  Google Scholar 

  2. Swinburn B. Commentary: physical activity as a minor player in the obesity epidemic: what are the deep implications? Int J Epidemiol. 2013;42(6):1838–40. https://doi.org/10.1093/ije/dyt162.

    Article  PubMed  Google Scholar 

  3. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077–86. https://doi.org/10.1016/S2214-109X(18)30357-7.

    Article  PubMed  Google Scholar 

  4. Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M. Appetite control and energy balance: impact of exercise. Obes Rev. 2015;16(Suppl 1):67–76. https://doi.org/10.1111/obr.12257.

    Article  PubMed  Google Scholar 

  5. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, American College of Sports Medicine. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71. https://doi.org/10.1249/MSS.0b013e3181949333.

    Article  PubMed  Google Scholar 

  6. Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4:CD003817. https://doi.org/10.1002/14651858.CD003817.pub3.

    Article  Google Scholar 

  7. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7. https://doi.org/10.1016/j.pcad.2013.09.012.

    Article  PubMed  Google Scholar 

  8. Thorogood A, Mottillo S, Shimony A, Filion KB, Joseph L, Genest J, Pilote L, Poirier P, Schiffrin EL, Eisenberg MJ. Isolated aerobic exercise and weight loss: a systematic review and meta-analysis of randomized controlled trials. Am J Med. 2011;124(8):747–55. https://doi.org/10.1016/j.amjmed.2011.02.037.

    Article  PubMed  Google Scholar 

  9. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S646–62. https://doi.org/10.1097/00005768-199911001-00025.

  10. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS Jr, Blair SN. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282(16):1547–53. https://doi.org/10.1001/jama.282.16.1547.

  11. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424733/pdf/pubhealthrep00100-0016.pdf.

  12. White DK, Gabriel KP, Kim Y, Lewis CE, Sternfeld B. Do short spurts of physical activity benefit cardiovascular health? The CARDIA study. Med Sci Sports Exerc. 2015;47(11):2353–8. https://doi.org/10.1249/MSS.0000000000000662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH, Jensen MD, Clark MM. Interindividual variation in posture allocation: possible role in human obesity. Science. 2005;307(5709):584–6. https://doi.org/10.1126/science.1106561.

    Article  CAS  PubMed  Google Scholar 

  14. Maffiuletti NA, Malatesta D, Agosti F, Sartorio A. Unstable shoes increase energy expenditure of obese patients. Am J Med. 2012;125(5):513–6. https://doi.org/10.1016/j.amjmed.2012.01.001.

    Article  PubMed  Google Scholar 

  15. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283(5399):212–4. https://doi.org/10.1126/science.283.5399.212.

  16. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports M. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. https://doi.org/10.1249/MSS.0b013e318213fefb.

    Article  PubMed  Google Scholar 

  17. Donnelly JE, Honas JJ, Smith BK, Mayo MS, Gibson CA, Sullivan DK, Lee J, Herrmann SD, Lambourne K, Washburn RA. Aerobic exercise alone results in clinically significant weight loss for men and women: midwest exercise trial 2. Obesity (Silver Spring). 2013;21(3):E219–28. https://doi.org/10.1002/oby.20145.

    Article  Google Scholar 

  18. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297(19):2081–91. https://doi.org/10.1001/jama.297.19.2081.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas DM, Kyle TK, Stanford FC. The gap between expectations and reality of exercise-induced weight loss is associated with discouragement. Prev Med. 2015;81:357–60. https://doi.org/10.1016/j.ypmed.2015.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Flack KD, Ufholz K, Johnson L, Fitzgerald JS, Roemmich JN. Energy compensation in response to aerobic exercise training in overweight adults. Am J Phys Regul Integr Comp Phys. 2018;315(4):R619–26. https://doi.org/10.1152/ajpregu.00071.2018.

    Article  CAS  Google Scholar 

  21. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab. 2006;291(1):E99–E107. https://doi.org/10.1152/ajpendo.00587.2005.

    Article  CAS  PubMed  Google Scholar 

  22. Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52(9):2191–7. https://doi.org/10.2337/diabetes.52.9.2191.

  23. Menshikova EV, Ritov VB, Toledo FG, Ferrell RE, Goodpaster BH, Kelley DE. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab. 2005;288(4):E818–25. https://doi.org/10.1152/ajpendo.00322.2004.

    Article  CAS  PubMed  Google Scholar 

  24. Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, Cooney GJ. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes. 2007;56(8):2085–92. https://doi.org/10.2337/db07-0093.

    Article  CAS  PubMed  Google Scholar 

  25. Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, DeFronzo RA. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty Acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes. 2005;54(11):3148–53. https://doi.org/10.2337/diabetes.54.11.3148.

  26. Santomauro AT, Boden G, Silva ME, Rocha DM, Santos RF, Ursich MJ, Strassmann PG, Wajchenberg BL. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes. 1999;48(9):1836–41. https://doi.org/10.2337/diabetes.48.9.1836.

  27. Schenk S, Harber MP, Shrivastava CR, Burant CF, Horowitz JF. Improved insulin sensitivity after weight loss and exercise training is mediated by a reduction in plasma fatty acid mobilization, not enhanced oxidative capacity. J Physiol. 2009;587(Pt 20):4949–61. https://doi.org/10.1113/jphysiol.2009.175489.

  28. Brun JF, Romain AJ, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): from physiological measurements to clinical applications. Facts and uncertainties. Sci Sports. 2011;26:57–71. https://doi.org/10.1016/j.scispo.2011.02.001.

  29. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55(2):628–34. https://doi.org/10.1152/jappl.1983.55.2.628.

  30. Achten J, Jeukendrup AE. Maximal fat oxidation during exercise in trained men. Int J Sports Med. 2003;24(8):603–8. https://doi.org/10.1055/s-2003-43265.

  31. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys. 1993;265(3 Pt 1):E380–91. https://doi.org/10.1152/ajpendo.1993.265.3.E380.

  32. van Loon LJ. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol. 2004;97(4):1170–87. https://doi.org/10.1152/japplphysiol.00368.2004.

  33. Achten J, Gleeson M, Jeukendrup AE. Determinaion of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34(1):92–7. https://doi.org/10.1152/japplphysiol.00368.2004.

  34. Brun JF, Malatesta D, Sartorio A. Maximal lipid oxidation during exercise: a target for individualizing endurance training in obesity and diabetes? J Endocrinol Investig. 2012;35(7):686–91. https://doi.org/10.3275/8466.

  35. Romain AJ, Carayol M, Desplan M, Fedou C, Ninot G, Mercier J, Avignon A, Brun JF. Physical activity targeted at maximal lipid oxidation: a meta-analysis. J Nutr Metab. 2012;2012:285395. https://doi.org/10.1155%2F2012%2F285395.

  36. Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-Gonzalez JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes. 2011;35(1):99–108. https://doi.org/10.1038/ijo.2010.123.

  37. Lanzi S, Codecasa F, Cornacchia M, Maestrini S, Salvadori A, Brunani A, Malatesta D. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS One. 2014;9(2):e88707. https://doi.org/10.1371/journal.pone.0088707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larsen S, Ara I, Rabol R, Andersen JL, Boushel R, Dela F, Helge JW. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia. 2009;52(7):1400–8. https://doi.org/10.1007/s00125-009-1353-4.

  39. Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008;40(3):495–502. https://doi.org/10.1249/MSS.0b013e31815f256f.

  40. Bordenave S, Metz L, Flavier S, Lambert K, Ghanassia E, Dupuy AM, Michel F, Puech-Cathala AM, Raynaud E, Brun JF, Mercier J. Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes. Diabetes Metab. 2008;34(2):162–8. https://doi.org/10.1016/j.diabet.2007.11.006.

  41. Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun JF. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes Metab. 2003;29(5):509–18. https://doi.org/10.1016/s1262-3636(07)70065-4.

  42. Dumortier M, Perez-Martin A, Pierrisnard E, Mercier J, Brun JF. Regular exercise (3x45 min/wk) decreases plasma viscosity in sedentary obese, insulin resistant patients parallel to an improvement in fitness and a shift in substrate oxidation balance. Clin Hemorheol Microcirc. 2002;26(4):219–29. https://content.iospress.com/articles/clinical-hemorheology-and-microcirculation/ch497.

  43. Ekkekakis P, Lind E, Vazou S. Affective responses to increasing levels of exercise intensity in normal-weight, overweight, and obese middle-aged women. Obesity (Silver Spring). 2010;18(1):79–85. https://doi.org/10.1038/oby.2009.204.

    Article  Google Scholar 

  44. Campbell WW, Kraus WE, Powell KE, Haskell WL, Janz KF, Jakicic JM, Troiano RP, Sprow K, Torres A, Piercy KL, Bartlett DB, Physical Activity Guidelines Advisory Committee. High-intensity interval training for cardiometabolic disease prevention. Med Sci Sports Exerc. 2019;51(6):1220–6. https://doi.org/10.1249/MSS.0000000000001934.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(Pt 5):1077–84. https://doi.org/10.1113/jphysiol.2011.224725.

  46. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34. https://doi.org/10.1136/bjsports-2013-092576.

    Article  PubMed  Google Scholar 

  47. Kong Z, Fan X, Sun S, Song L, Shi Q, Nie J. Comparison of high-intensity interval training and moderate-to-vigorous continuous training for cardiometabolic health and exercise enjoyment in obese young women: a randomized controlled trial. PLoS One. 2016;11(7):e0158589. https://doi.org/10.1371/journal.pone.0158589.

  48. Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56. https://doi.org/10.1249/MSS.0b013e3182199834.

  49. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, Gibala MJ. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111(6):1554–60. https://doi.org/10.1152/japplphysiol.00921.2011.

  50. Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol (1985). 2016;121(1):279–88. https://doi.org/10.1152/japplphysiol.00024.2016.

    Article  Google Scholar 

  51. Gerosa-Neto J, Antunes BM, Campos EZ, Rodrigues J, Ferrari GD, Rosa Neto JC, Bueno CRJ, Lira FS. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil. 2016;12(6):575–80. https://doi.org/10.12965/jer.1632770.385.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slordahl SA, Kemi OJ, Najjar SM, Wisloff U. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54. https://doi.org/10.1161/CIRCULATIONAHA.108.772822.

  53. Tjonna AE, Stolen TO, Bye A, Volden M, Slordahl SA, Odegard R, Skogvoll E, Wisloff U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci (Lond). 2009;116(4):317–26. https://doi.org/10.1042/CS20080249.

  54. Zhang H, Tong TK, Qiu W, Zhang X, Zhou S, Liu Y, He Y. Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diabetes Res. 2017;2017:5071740. https://doi.org/10.1155/2017/5071740.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Martins C, Kazakova I, Ludviksen M, Mehus I, Wisloff U, Kulseng B, Morgan L, King N. High-intensity interval training and isocaloric moderate-intensity continuous training result in similar improvements in body composition and fitness in obese individuals. Int J Sport Nutr Exerc Metab. 2016;26(3):197–204. https://doi.org/10.1123/ijsnem.2015-0078.

    Article  PubMed  Google Scholar 

  56. Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112(7):2767–75. https://doi.org/10.1007/s00421-011-2254-z.

    Article  PubMed  Google Scholar 

  57. Skleryk JR, Karagounis LG, Hawley JA, Sharman MJ, Laursen PB, Watson G. Two weeks of reduced-volume sprint interval or traditional exercise training does not improve metabolic functioning in sedentary obese men. Diabetes Obes Metab. 2013;15(12):1146–53. https://doi.org/10.1111/dom.12150.

    Article  CAS  PubMed  Google Scholar 

  58. Trilk JL, Singhal A, Bigelman KA, Cureton KJ. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011;111(8):1591–7. https://doi.org/10.1007/s00421-010-1777-z.

  59. Whyte LJ, Ferguson C, Wilson J, Scott RA, Gill JM. Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism. 2013;62(2):212–9. https://doi.org/10.1016/j.metabol.2012.07.019.

    Article  CAS  PubMed  Google Scholar 

  60. Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):1421–8.

    Article  CAS  PubMed  Google Scholar 

  61. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489–509. https://doi.org/10.1016/j.metabol.2010.01.002.

  62. Gibala MJ, Little JP. Just HIT it! A time-efficient exercise strategy to improve muscle insulin sensitivity. J Physiol. 2010;588(Pt 18):3341–2. https://doi.org/10.1113/jphysiol.2010.196303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tjonna AE, Leinan IM, Bartnes AT, Jenssen BM, Gibala MJ, Winett RA, Wisloff U. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS One. 2013;8(5):e65382. https://doi.org/10.1371/journal.pone.0065382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Senden JM, van Baak MA. Effect of exercise training at different intensities on fat metabolism of obese men. J Appl Physiol. 2002;92(3):1300–9. https://doi.org/10.1152/japplphysiol.00030.2001.

  65. Salvadori A, Fanari P, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, Brunani A, Luzi L, Longhini E. Short bouts of anaerobic exercise increase non-esterified fatty acids release in obesity. Eur J Nutr. 2014;53(1):243–9. https://doi.org/10.1007/s00394-013-0522-x.

    Article  CAS  PubMed  Google Scholar 

  66. Salvadori A, Fanari P, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, Walker G, Brunani A, Longhini E. Dynamics of GH secretion during incremental exercise in obesity, before and after a short period of training at different work-loads. Clin Endocrinol. 2010;73(4):491–6. https://doi.org/10.1111/j.1365-2265.2010.03837.x.

    Article  CAS  Google Scholar 

  67. Su L, Fu J, Sun S, Zhao G, Cheng W, Dou C, Quan M. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: a meta-analysis. PLoS One. 2019;14(1):e0210644. https://doi.org/10.1371/journal.pone.0210644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baekkerud FH, Solberg F, Leinan IM, Wisloff U, Karlsen T, Rognmo O. Comparison of three popular exercise modalities on V O2max in overweight and obese. Med Sci Sports Exerc. 2016;48(3):491–8. https://doi.org/10.1249/MSS.0000000000000777.

    Article  CAS  PubMed  Google Scholar 

  69. Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18(6):635–46. https://doi.org/10.1111/obr.12532.

    Article  CAS  PubMed  Google Scholar 

  70. Lanzi S, Codecasa F, Cornacchia M, Maestrini S, Capodaglio P, Brunani A, Fanari P, Salvadori A, Malatesta D. Short-term HIIT and Fat max training increase aerobic and metabolic fitness in men with class II and III obesity. Obesity (Silver Spring). 2015;23(10):1987–94. https://doi.org/10.1002/oby.21206.

    Article  CAS  Google Scholar 

  71. Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101–6. https://doi.org/10.1152/japplphysiol.00707.2003.

    Article  CAS  PubMed  Google Scholar 

  72. Lunt H, Draper N, Marshall HC, Logan FJ, Hamlin MJ, Shearman JP, Cotter JD, Kimber NE, Blackwell G, Frampton CM. High intensity interval training in a real world setting: a randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake. PLoS One. 2014;9(1):e83256. https://doi.org/10.1371/journal.pone.0083256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dalle Grave R, Calugi S, Centis E, El Ghoch M, Marchesini G. Cognitive-behavioral strategies to increase the adherence to exercise in the management of obesity. J Obes. 2011;2011:348293. https://doi.org/10.1155/2011/348293.

    Article  PubMed  Google Scholar 

  74. Ramos-Campo DJ, Girard O, Perez A, Rubio-Arias JA. Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: a systematic review and meta-analysis. Physiol Behav. 2019;207:28–40. https://doi.org/10.1016/j.physbeh.2019.04.027.

    Article  CAS  PubMed  Google Scholar 

  75. Urdampilleta A, Gonzalez-Muniesa P, Portillo MP, Martinez JA. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J Physiol Biochem. 2012;68(2):289–304. https://doi.org/10.1007/s13105-011-0115-1.

    Article  CAS  PubMed  Google Scholar 

  76. Browning RC. Locomotion mechanics in obese adults and children. Curr Obes Rep. 2012;1(3):152–9. https://doi.org/10.1007/s13679-012-0021-z.

    Article  Google Scholar 

  77. Browning RC, McGowan CP, Kram R. Obesity does not increase external mechanical work per kilogram body mass during walking. J Biomech. 2009;42(14):2273–8. https://doi.org/10.1016/j.jbiomech.2009.06.046.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fernandez Menendez A, Saubade M, Millet GP, Malatesta D. Energy-saving walking mechanisms in obese adults. J Appl Physiol (1985). 2019;126(5):1250–8. https://doi.org/10.1152/japplphysiol.00473.2018.

    Article  Google Scholar 

  79. Malatesta D, Vismara L, Menegoni F, Galli M, Romei M, Capodaglio P. Mechanical external work and recovery at preferred walking speed in obese subjects. Med Sci Sports Exerc. 2009;41(2):426–34. https://doi.org/10.1249/MSS.0b013e31818606e7.

    Article  PubMed  Google Scholar 

  80. Malatesta D, Vismara L, Menegoni F, Grugni G, Capodaglio P. Effect of obesity onset on pendular energy transduction at spontaneous walking speed: Prader-Willi versus nonsyndromal obese individuals. Obesity (Silver Spring). 2013;21(12):E586–91. https://doi.org/10.1002/oby.20455.

    Article  Google Scholar 

  81. Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. The biomechanics of restricted movement in adult obesity. Obes Rev. 2006;7(1):13–24. https://doi.org/10.1111/j.1467-789X.2006.00215.x.

    Article  CAS  PubMed  Google Scholar 

  82. Sheehan K, Gormley J. Gait and increased body weight (potential implications for musculoskeletal disease). Phys Ther Rev. 2012;17(2):91–8. https://doi.org/10.1179/1743288X11Y.0000000057.

    Article  Google Scholar 

  83. Hootman JM, Macera CA, Ainsworth BE, Addy CL, Martin M, Blair SN. Epidemiology of musculoskeletal injuries among sedentary and physically active adults. Med Sci Sports Exerc. 2002;34(5):838–44. https://doi.org/10.1097/00005768-200205000-00017.

  84. Girard O, Malatesta D, Millet GP. Walking in hypoxia: an efficient treatment to lessen mechanical constraints and improve health in obese individuals? Front Physiol. 2017;8:73. https://doi.org/10.3389/fphys.2017.00073.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hobbins L, Hunter S, Gaoua N, Girard O. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review. Am J Phys Regul Integr Comp Phys. 2017;313(3):R251–64. https://doi.org/10.1152/ajpregu.00160.2017.

    Article  CAS  Google Scholar 

  86. Kayser B, Verges S. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev. 2013;14(7):579–92. https://doi.org/10.1111/obr.12034.

    Article  CAS  PubMed  Google Scholar 

  87. Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Phys Regul Integr Comp Phys. 2014;307(10):R1181–97. https://doi.org/10.1152/ajpregu.00208.2014.

    Article  CAS  Google Scholar 

  88. Kong Z, Zang Y, Hu Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath. 2014;18(3):591–7. https://doi.org/10.1007/s11325-013-0922-4.

    Article  PubMed  Google Scholar 

  89. Netzer NC, Chytra R, KĂ¼pper T. Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath. 2008;12(2):129–34. https://doi.org/10.1007/s11325-007-0149-3.

    Article  PubMed  Google Scholar 

  90. Wiesner S, Haufe S, Engeli S, Mutschler H, Haas U, Luft FC, Jordan J. Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity (Silver Spring). 2010;18(1):116–20. https://doi.org/10.1038/oby.2009.193.

    Article  CAS  Google Scholar 

  91. Fernandez Menendez A, Saudan G, Sperisen L, Hans D, Saubade M, Millet GP, Malatesta D. Effects of short-term normobaric hypoxic walking training on energetics and mechanics of gait in adults with obesity. Obesity (Silver Spring). 2018;26(5):819–27. https://doi.org/10.1002/oby.22131.

    Article  Google Scholar 

  92. Haufe S, Wiesner S, Engeli S, Luft FC, Jordan J. Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc. 2008;40(11):1939–44. https://doi.org/10.1249/MSS.0b013e31817f1988.

    Article  PubMed  Google Scholar 

  93. Camacho-Cardenosa A, Camacho-Cardenosa M, Brazo-Sayavera J, Burtscher M, Timon R, Olcina G. Effects of high-intensity interval training under normobaric hypoxia on cardiometabolic risk markers in overweight/obese women. High Alt Med Biol. 2018;19(4):356–66. https://doi.org/10.1089/ham.2018.0059.

    Article  PubMed  Google Scholar 

  94. Camacho-Cardenosa A, Camacho-Cardenosa M, Burtscher M, Martinez-Guardado I, Timon R, Brazo-Sayavera J, Olcina G. High-intensity interval training in normobaric hypoxia leads to greater body fat loss in overweight/obese women than high-intensity interval training in normoxia. Front Physiol. 2018;9:60. https://doi.org/10.3389/fphys.2018.00060.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kong Z, Shi Q, Nie J, Tong TK, Song L, Yi L, Hu Y. High-intensity interval training in normobaric hypoxia improves cardiorespiratory fitness in overweight chinese young women. Front Physiol. 2017;8:175. https://doi.org/10.3389/fphys.2017.00175.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Borel JC, Wuyam B, Chouri-Pontarollo N, Deschaux C, Levy P, Pepin JL. During exercise non-invasive ventilation in chronic restrictive respiratory failure. Respir Med. 2008;102(5):711–9. https://doi.org/10.1016/j.rmed.2007.12.017.

    Article  PubMed  Google Scholar 

  97. van ‘t Hul A, Kwakkel G, Gosselink R. The acute effects of noninvasive ventilatory support during exercise on exercise endurance and dyspnea in patients with chronic obstructive pulmonary disease: a systematic review. J Cardpulm Rehabil. 2002;22(4):290–7. https://doi.org/10.1097/00008483-200207000-00013.

  98. Babb TG, Ranasinghe KG, Comeau LA, Semon TL, Schwartz B. Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing. Am J Respir Crit Care Med. 2008;178(2):116–23. https://doi.org/10.1164/rccm.200706-875OC.

    Article  PubMed  Google Scholar 

  99. Pepin JL, Tamisier R, Levy P. Obstructive sleep apnoea and metabolic syndrome: put CPAP efficacy in a more realistic perspective. Thorax. 2012;67(12):1025–7. https://doi.org/10.1136/thoraxjnl-2012-202807.

    Article  PubMed  Google Scholar 

  100. Vivodtzev I, Tamisier R, Croteau M, Borel JC, Grangier A, Wuyam B, Levy P, Minville C, Series F, Maltais F, Pepin JL. Ventilatory support or respiratory muscle training as adjuncts to exercise in obese CPAP-treated patients with obstructive sleep apnoea: a randomised controlled trial. Thorax. 2018; https://doi.org/10.1136/thoraxjnl-2017-211152.

  101. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory Am Rev Respir Dis. 1992;145(1):114–20. https://doi.org/10.1164/ajrccm/145.1.114.

    Article  CAS  PubMed  Google Scholar 

  102. Dreher M, Kabitz HJ, Burgardt V, Walterspacher S, Windisch W. Proportional assist ventilation improves exercise capacity in patients with obesity. Respiration. 2010;80(2):106–11. https://doi.org/10.1159/000245272.

    Article  PubMed  Google Scholar 

  103. Jakicic JM, Rogers RJ, Davis KK, Collins KA. Role of physical activity and exercise in treating patients with overweight and obesity. Clin Chem. 2018;64(1):99–107. https://doi.org/10.1373/clinchem.2017.272443.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Elsevier for the permission to reuse Figures and Tables of the manuscript of Swift et al. [7].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Malatesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malatesta, D., Fanari, P., Salvadori, A., Lanzi, S. (2020). Physical Activity and Endurance Training Modalities: Evidences and Perspectives. In: Capodaglio, P. (eds) Rehabilitation interventions in the patient with obesity. Springer, Cham. https://doi.org/10.1007/978-3-030-32274-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32274-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32273-1

  • Online ISBN: 978-3-030-32274-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics