Skip to main content

Ensembles of Active Adaptive Incremental Classifiers

  • Conference paper
  • First Online:
Man-Machine Interactions 6 (ICMMI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1061 ))

Included in the following conference series:

  • 363 Accesses

Abstract

An important and ubiquitous feature of the data stream generating process is its nonstationarity. Therefore, the models trained on such data streams have to be adaptive in order to react correctly on appearing concept drift. There is a number of concept drift detection methods that can be combined with a learning method to create active adaptive learner. However, none of the approaches was reported to be unambiguously the best. Within the presented work two ensemble approaches combining the adaptive base learners are applied in order to achieve higher classification quality. The analysis shows diversity of the utilised base adaptive learners justifying application of the proposed solution. The quality of results confirms that creating the ensemble of drift detectors can improve the classification quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakirov, R., Gabrys, B., Fay, D.: Multiple adaptive mechanisms for data-driven soft sensors. Comput. Chem. Eng. 96, 42–54 (2017). https://doi.org/10.1016/j.compchemeng.2016.08.017. http://www.sciencedirect.com/science/article/pii/S0098135416302782

    Article  Google Scholar 

  2. Barros, R.S.M., Santos, S.G.T.: A large-scale comparison of concept drift detectors. Inf. Sci. 451–452, 348–370 (2018). https://doi.org/10.1016/j.ins.2018.04.014

    Article  MathSciNet  Google Scholar 

  3. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.F. (eds.) Advances in Intelligent Data Analysis VIII, pp. 249–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010). http://portal.acm.org/citation.cfm?id=1859903

    Google Scholar 

  5. Bifet, A., Read, J., Pfahringer, B., Holmes, G., Žliobaitė, I.: CD-MOA: change detection framework for massive online analysis. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) Advances in Intelligent Data Analysis XII, pp. 92–103. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014). https://doi.org/10.1109/TNNLS.2013.2251352

    Article  Google Scholar 

  7. Dawid, A.P.: Present position and potential developments: some personal views statistical theory the prequential approach. J. R. Stat. Soc. Ser. (Gen.) 147(2), 278–290 (1984). https://doi.org/10.2307/2981683. https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2981683

    Article  Google Scholar 

  8. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015). https://doi.org/10.1109/MCI.2015.2471196

    Article  Google Scholar 

  9. Frías-Blanco, I., Verdecia-Cabrera, A., Ortiz-Díaz, A., Carvalho, A.: Fast adaptive stacking of ensembles. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing - SAC 2016, pp. 929–934 (2016). https://doi.org/10.1145/2851613.2851655. http://dl.acm.org/citation.cfm?doid=2851613.2851655

  10. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Data stream mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 759–787. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4_39

    Chapter  Google Scholar 

  11. Gama, J.a., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 329–338. ACM, New York (2009). https://doi.org/10.1145/1557019.1557060. http://doi.acm.org/10.1145/1557019.1557060

  12. Gama, J.a., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014). https://doi.org/10.1145/2523813. http://doi.acm.org/10.1145/2523813

    Article  Google Scholar 

  13. Gonçalves, P.M., De Carvalho Santos, S.G.T., Barros, R.S.M., Vieira, D.C.L.: A comparative study on concept drift detectors (2014). https://doi.org/10.1016/j.eswa.2014.07.019

    Article  Google Scholar 

  14. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106. ACM, New York (2001). https://doi.org/10.1145/502512.502529. http://doi.acm.org/10.1145/502512.502529

  15. Ślęzak, D., Grzegorowski, M., Janusz, A., Kozielski, M., Nguyen, S.H., Sikora, M., Stawicki, S., Wróbel, Ł.: A framework for learning andembedding multi-sensor forecasting models into a decision support system: a case study of methane concentration in coal mines. Inf. Sci. 451–452, 112–133 (2018). https://doi.org/10.1016/j.ins.2018.04.026. http://www.sciencedirect.com/science/article/pii/S0020025518302822

    Article  Google Scholar 

  16. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996). https://doi.org/10.1023/A:1018046501280

    Article  Google Scholar 

  17. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992). https://doi.org/10.1016/S0893-6080(05)80023-1. http://www.sciencedirect.com/science/article/pii/S0893608005800231

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out within the statutory research project of the Institute of Informatics, Silesian University of Technology: BK-204/RAU2/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Kozielski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozielski, M., Kozieł, K. (2020). Ensembles of Active Adaptive Incremental Classifiers. In: Gruca, A., Czachórski, T., Deorowicz, S., Harężlak, K., Piotrowska, A. (eds) Man-Machine Interactions 6. ICMMI 2019. Advances in Intelligent Systems and Computing, vol 1061 . Springer, Cham. https://doi.org/10.1007/978-3-030-31964-9_7

Download citation

Publish with us

Policies and ethics