Skip to main content

EEG Motor Execution Decoding via Interpretable Sinc-Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

The decoding of brain signals is a fundamental component of a brain-computer interface. Despite the success of deep convolutional neural networks (CNNs) in other fields, only recently these techniques have been applied to electroencephalographic (EEG) signals. One drawback of CNNs is the lack of interpretation of the learned features. In this study we introduce for the first time a sinc-convolutional layer into a CNN for EEG motor execution decoding, allowing a straightforward interpretation of the learned kernels. Furthermore, we apply a gradient-based analysis to assess the most relevant EEG bands for each movement and the most relevant EEG electrodes exploited in these bands. In addition to a slight accuracy improvement from 91.9 to 92.4%, our results suggest that the \(high\gamma \) band is the most relevant EEG band, with gradient-based scalp distributions well localized at specific subsets of electrodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://web.gin.g-node.org/robintibor/high-gamma-dataset.

References

  1. Wolpaw, J., Wolpaw, E.: Brain-Computer Interfaces: Principles and Practice. Oxford University Press, USA (2012)

    Book  Google Scholar 

  2. Chaudhary, U., Birbaumer, N., Ramos-Murguialday, A.: Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12, 513–525 (2016)

    Article  Google Scholar 

  3. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors (Basel, Switzerland) 12(2), 1211–79 (2012)

    Article  Google Scholar 

  4. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  5. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals. Comput. Biol. Med. 100, 270–278 (2018)

    Article  Google Scholar 

  6. Cecotti, H., Graser, A.: Convolutional neural networks for p300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)

    Article  Google Scholar 

  7. Hajinoroozi, M., Mao, Z., Jung, T.P., Lin, C.T., Huang, Y.: Eeg-based prediction of driver’s cognitive performance by deep convolutional neural network. Signal Process. Image Commun. 47, 549–555 (2016)

    Article  Google Scholar 

  8. van Leeuwen, K., Sun, H., Tabaeizadeh, M., Struck, A., van Putten, M., Westover, M.: Detecting abnormal electroencephalograms using deep convolutional networks. Clin. Neurophysiol. 130(1), 77–84 (2019)

    Article  Google Scholar 

  9. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint (2013)

    Google Scholar 

  10. Ravanelli, M., Bengio, Y.: Speaker recognition from raw waveform with sincnet. In: 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 1021–1028, December 2018

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 37, pp. 448–456. PMLR, Lille, France, 07–09 July 2015

    Google Scholar 

  12. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint (2015)

    Google Scholar 

  13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MATH  MathSciNet  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint (2014)

    Google Scholar 

  15. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Borra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borra, D., Fantozzi, S., Magosso, E. (2020). EEG Motor Execution Decoding via Interpretable Sinc-Convolutional Neural Networks. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_135

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_135

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics