Skip to main content

Calibration of Population Growth Mathematical Models by Using Time Series

  • Conference paper
  • First Online:
Selected Contributions on Statistics and Data Science in Latin America (FNE 2018)

Abstract

In this paper, we study the problem of coefficients identification in population growth models. We consider that the dynamics of the population is described by a system of ordinary differential equations of susceptible-infective-recovered (SIR) type, and we assume that we have a discrete observation of infective population. We construct a continuous observation by applying time series and an appropriate fitting to the discrete observation data. The identification problem consists in the determination of different parameters in the governing equations such that the infective population obtained as solution of the SIR system is as close as to the observation. We introduce a reformulation of the calibration problem as an optimization problem where the objective function and the restriction are given by the comparison in the \(L_2\)-norm of theoretical solution of the mathematical model and the observation, and the SIR system governing the phenomenon, respectively. We solve numerically the optimization problem by applying the gradient method where the gradient of the cost function is obtained by introducing an adjoint state. In addition, we consider a numerical example to illustrate the application of the proposed calibration method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akmatov, M.K., Kretzschmar, M., Krämer, A., Mikolajczyk, R.T.: Timeliness of vaccination and its effects on fraction of vaccinated population. Vaccine 26(31), 3805–3811 (2008)

    Article  Google Scholar 

  2. Alvarez, F., Cabot, M.: Steepest descent with curvature dynamical system. J. Optim. Theory Appl. 120, 247–273 (2004). https://doi.org/10.1023/B:JOTA.0000015684.50827.49

    Article  MathSciNet  Google Scholar 

  3. Bai, Z., Zhou, Y.: Existence of two periodic solutions for a non-autonomous \(SIR\) epidemic model. Appl. Math. Model. 35, 382–391 (2011). https://doi.org/10.1016/j.apm.2010.07.002

    Article  MathSciNet  Google Scholar 

  4. Barriga, G., Hernández, E.: Aspectos actuales de las infecciones emergentes y reemergentes. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio 62(3), 174–182 (2015)

    Google Scholar 

  5. Bauch, C., Earn, D.: Interepidemic intervals in forced and unforced SEIR models. In: Ruan, S., Wolkowicz, G.S., Wu, J. (eds.) Dynamical Systems and Their Applications in Biology. American Mathematical Society, New York (2003)

    Google Scholar 

  6. Bhopal, R.S.: Concepts of Epidemiology: Integrating the Ideas, Theories, Principles, and Methods of Epidemiology. Oxford University Press, Oxford (2016)

    Google Scholar 

  7. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis. Forecasting and Control, 5th edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  8. Bürger, R., Coronel, A., Sepúlveda, M.: Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation, hyperbolic problems: theory, numerics and applications. Proc. Symp. Appl. Math. 67, 445–454 (2009)

    Article  Google Scholar 

  9. Cauchemez, S., Ferguson, N.M.: Likelihood based estimation of continuous time epidemic models from timeseries data: application to measles transmission in London. J. R. Soc. Interface 5(25), 885–897 (2008)

    Article  Google Scholar 

  10. Coronel, A., James, F., Sepúlveda, M.: Numerical identification of parameters for a model of sedimentation processes. Inverse Probl. 19(4), 951–972 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dayan, G.H., Shaw, K.M., Baughman, A.L., Orellana, L.C., Forlenza, R., Ellis, A., Chaui, J., Kaplan, S., Strebel, P.: Assessment of delay in age-appropriate vaccination using survival analysis. Am. J. Epidemiol. 163(6), 561–570 (2006)

    Article  Google Scholar 

  12. Detels, R.: Epidemiology: the foundation of public health. Oxford Textbook of Global Public Health, 5th edn. (2015). https://doi.org/10.1093/med/9780199661756.001.0001

    Google Scholar 

  13. Diekmann, O., Heesterbeek, J.A.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000)

    MATH  Google Scholar 

  14. Engl, H.W., Flamm, C., Kügler, P., Lu, J., Müller, S., Schuster, P.: Inverse problems in systems biology. Inverse Probl. 25, 1–51 (2009). https://doi.org/10.1088/0266-5611/25/12/123014

    Article  MathSciNet  Google Scholar 

  15. Estrella, E.: Consecuencias epidemiológicas de la conquista de América. MS. Dpto. de Humanidades Médicas, Facultad de Medicina, Universidad Central de Quito, Ecuador (2002)

    Google Scholar 

  16. Frasso, G., Lambert, P.: Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone. Biostatistics 17(4), 779–792 (2016)

    Article  MathSciNet  Google Scholar 

  17. Gibson, G.J., Renshaw, E.: Estimating parameters in stochastic compartmental models using Markov chain methods. Math. Med. Biol.: J. IMA 15(1), 19–40 (1998)

    Article  Google Scholar 

  18. Hethcote, H.W.: The mathematics of infectious diseases. SIAM 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  19. Last, J.M., Abramson, J.H., Freidman, G.D.: A Dictionary of Epidemiology, 6th edn. Oxford University Press, New York (2014)

    Google Scholar 

  20. Lekone, P.E., Finkenstädt, B.F.: Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62(4), 1170–1177 (2006)

    Article  MathSciNet  Google Scholar 

  21. Marinova, T.T., Marinova, R.S., Omojola, J., Jackson, M.: Inverse problem for coefficient identification in SIR epidemic models. Comput. Math. Appl. 67, 2218–2227 (2014). https://doi.org/10.1016/j.camwa.2014.02.002

    Article  MathSciNet  Google Scholar 

  22. McKinley, T.J., Ross, J.V., Deardon, R., Cook, A.R.: Simulation based Bayesian inference for epidemic models. Comput. Stat. Data Anal. 71, 434–447 (2014)

    Article  MathSciNet  Google Scholar 

  23. Mohammadbeigi, A., Mokhtari, M., Zahraei, S.M., Eshrati, B., Rejali, M.: Survival analysis for predictive factors of delay vaccination in Iranian children. Int. J. Prev. Med. 6(1), 119–123 (2015). https://doi.org/10.4103/2008-7802.170868

    Article  Google Scholar 

  24. Norrie, P.: A History of Disease in Ancient Times: More Lethal than War. Springer, Berlin (2016)

    Chapter  Google Scholar 

  25. Panagiotakopulu, E.: Pharaonic Egypt and the origins of plague. J. Biogeogr. 31(2), 269–275 (2004). https://doi.org/10.1046/j.0305-0270.2003.01009.x

    Article  Google Scholar 

  26. Pesco, P.: Modelos estocásticos para epidemias recurrentes. Tesis doctoral, La Plata, Argentina (2017)

    Google Scholar 

  27. Rhodes, A., Allman, E.S.: Mathematical Models in Biology: An Introduction. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  28. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018). http://www.R-project.org

  29. Streftaris, G., Gibson, G.J.: Statistical inference for stochastic epidemic models. In: Proceedings of the 17th International Workshop on Statistical Modeling, pp. 609–616 (2002)

    Google Scholar 

  30. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Google Scholar 

  31. Wang, W., Ruan, S.: Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291, 775–793 (2004). https://doi.org/10.1016/j.jmaa.2003.11.043

    Article  MathSciNet  Google Scholar 

  32. Wu, L., Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. Differ. Equ. 168, 150–167 (2000). https://doi.org/10.1006/jdeq.2000.3882

    Article  MathSciNet  Google Scholar 

  33. Xu, X., Kypraios, T., O’neill, P.D.: Bayesian nonparametric inference for stochastic epidemic models using Gaussian processes. Biostatistics 17(4), 619–633 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zietz, B.P., Dunkelberg, H.: The history of the plague and the research on the causative agent Yersinia pestis. Int. J. Hyg. Environ. Health 207(2), 165–178 (2004). https://doi.org/10.1078/1438-4639-00259

    Article  Google Scholar 

Download references

Acknowledgements

We thank to research projects DIUBB 172409 GI/C and FAPEI at U. del Bío-Bío, Chile. AC thanks to the research project DIUBB 183309 4/R at U. del Bío-Bío, Chile. IH thanks to the program “Becas de doctorado” of Conicyt-Chile. Ian Hess and Francisco Novoa-Muñoz would thank the support of the program “Fortalecimiento del postgrado” of the project “Instalación del Plan Plurianual UBB 2016–2020”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Novoa-Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novoa-Muñoz, F., Espinoza, S.C., Pérez, A.C., Duque, I.H. (2019). Calibration of Population Growth Mathematical Models by Using Time Series. In: Antoniano-Villalobos, I., Mena, R., Mendoza, M., Naranjo, L., Nieto-Barajas, L. (eds) Selected Contributions on Statistics and Data Science in Latin America. FNE 2018. Springer Proceedings in Mathematics & Statistics, vol 301. Springer, Cham. https://doi.org/10.1007/978-3-030-31551-1_8

Download citation

Publish with us

Policies and ethics