Skip to main content

A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11773))

Included in the following conference series:

Abstract

Type I Diabetes (T1D) is a chronic disease in which the body’s ability to synthesize insulin is destroyed. It can be difficult for patients to manage their T1D, as they must control a variety of behavioral factors that affect glycemic control outcomes. In this paper, we explore T1D patient behaviors using a Signal Temporal Logic (STL) based learning approach. STL formulas learned from real patient data characterize behavior patterns that may result in varying glycemic control. Such logical characterizations can provide feedback to clinicians and their patients about behavioral changes that patients may implement to improve T1D control. We present both individual- and population-level behavior patterns learned from a clinical dataset of 21 T1D patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Diabetes Association: 13. children and adolescents: standards of medical care in diabetes–2019. Diab. Care 42(Suppl. 1), S148–S164 (2019)

    Google Scholar 

  2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_3

    Chapter  MATH  Google Scholar 

  3. Bombara, G., Vasile, C.I., Penedo, F.: A decision tree approach to data classification using signal temporal logic, pp. 1–10 (2016)

    Google Scholar 

  4. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Temporal logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_30

    Chapter  Google Scholar 

  5. Bumgardner, W.: The average steps per minute for different exercises. https://www.verywellfit.com/pedometer-step-equivalents-for-exercises-and-activities-3435742

  6. Cameron, F., Niemeyer, G., Bequette, B.W.: Extended multiple model prediction with application to blood glucose regulation. J. Process Control 22(8), 1422–1432 (2012)

    Article  Google Scholar 

  7. Chatterjee, S., Byun, J., Dutta, K., Pedersen, R.U., Pottathil, A., Xie, H.: Designing an Internet-of-Things (IoT) and sensor-based in-home monitoring system for assisting diabetes patients: iterative learning from two case studies. Eur. J. Inf. Syst. 27(6), 670–685 (2018)

    Article  Google Scholar 

  8. Chen, S., Feng, L., Rickels, M.R., Peleckis, A., Sokolsky, O., Lee, I.: A Data-Driven Behavior Modeling and Analysis Framework for Diabetic Patients on Insulin Pumps Recommended Citation, Technical report (2015). http://repository.upenn.edu/cis_papersrepository.upenn.edu/cis_papers/791

  9. Deshmukh, J., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.: Robust online monitoring of signal temporal logic, pp. 1–26, July 2017

    Google Scholar 

  10. Prevention: Type 1 diabetes for Disease Control, C.C., August 2018. https://www.cdc.gov/diabetes/basics/type1.html

  11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  12. Fabris, C., Patek, S.D., Breton, M.D.: Are risk indices derived from CGM interchangeable with SMBG-based indices? J. Diab. Sci. Technol. 10(1), 50–59 (2016)

    Article  Google Scholar 

  13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262 – 4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021. http://www.sciencedirect.com/science/article/pii/S0304397509004149

    Article  MathSciNet  Google Scholar 

  14. Hoyos, J.D., Bolanos, F., Vallejo, M., Rivadeneira, P.S.: Population-based incremental learning algorithm for identification of blood glucose dynamics model for type-1 diabetic patients. In: Proceedings on the International Conference on Artificial Intelligence (ICAI), pp. 29–35. The Steering Committee of The World Congress in Computer Science, Computer (2018)

    Google Scholar 

  15. IDF: IDF diabetes atlas 8th edition 2017 (2017). https://diabetesatlas.org/

  16. Klimek, R.: Behavior recognition and analysis in smart environments for context-aware applications, October 2015 (2016). https://doi.org/10.1109/SMC.2015.340

  17. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anomalous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017). https://doi.org/10.1109/TAC.2016.2585083

    Article  MathSciNet  MATH  Google Scholar 

  18. Kovatchev, B.P.: Metrics for glycaemic control-from HbA 1c to continuous glucose monitoring. Nat. Rev. Endocrinol. 13(7), 425 (2017)

    Article  Google Scholar 

  19. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  20. Marshall, S.J., et al.: Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. Am. J. Prev. Med. 36(5), 410–415 (2009)

    Article  Google Scholar 

  21. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_20

    Chapter  Google Scholar 

  22. Paoletti, N., Liu, K.S., Smolka, S.A., Lin, S.: Data-driven robust control for type 1 diabetes under meal and exercise uncertainties. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 214–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_13

    Chapter  Google Scholar 

  23. Riddell, M.C., et al.: Exercise management in type 1 diabetes: a consensus statement. Lancet Diab. Endocrinol. 5(5), 377–390 (2017). https://doi.org/10.1016/S2213-8587(17)30014-1

    Article  Google Scholar 

  24. Young, W., Corbett, J., Gerber, M.S., Patek, S., Feng, L.: DAMON: a data authenticity monitoring system for diabetes management. In: 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 25–36. IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to graciously thank the UVA Center for Diabetes Technology for providing the clinical datasets and Basak Ozaslan, Jack Corbett, Jonathan Hughes and Dr. José García-Tirado for their clinical insights and valuable discussions. Research partially supported by the Austrian National Research Networks RiSE/ShiNE (S11405) and ADynNet (P28182) of the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine Lamp .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 5. Accuracy rates for repeated rules

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lamp, J., Silvetti, S., Breton, M., Nenzi, L., Feng, L. (2019). A Logic-Based Learning Approach to Explore Diabetes Patient Behaviors. In: Bortolussi, L., Sanguinetti, G. (eds) Computational Methods in Systems Biology. CMSB 2019. Lecture Notes in Computer Science(), vol 11773. Springer, Cham. https://doi.org/10.1007/978-3-030-31304-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31304-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31303-6

  • Online ISBN: 978-3-030-31304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics