Skip to main content

Explainable Artificial Intelligence for Human-Centric Data Analysis in Virtual Learning Environments

  • Conference paper
  • First Online:
Higher Education Learning Methodologies and Technologies Online (HELMeTO 2019)

Abstract

The amount of data to analyze in virtual learning environments (VLEs) grows exponentially everyday. The daily interaction of students with VLE platforms represents a digital foot print of the students’ engagement with the learning materials and activities. This big and worth source of information needs to be managed and processed to be useful. Educational Data Mining and Learning Analytics are two research branches that have been recently emerged to analyze educational data. Artificial Intelligence techniques are commonly used to extract hidden knowledge from data and to construct models that could be used, for example, to predict students’ outcomes. However, in the educational field, where the interaction between humans and AI systems is a main concern, there is a need of developing new Explainable AI (XAI) systems, that are able to communicate, in a human understandable way, the data analysis results. In this paper, we use an XAI tool, called ExpliClas, with the aim of facilitating data analysis in the context of the decision-making processes to be carried out by all the stakeholders involved in the educational process. The Open University Learning Analytics Dataset (OULAD) has been used to predict students’ outcome, and both graphical and textual explanations of the predictions have shown the need and the effectiveness of using XAI in the educational field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    European Commission, Artificial Intelligence for Europe, Brussels, Belgium, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions”, Tech. Rep., 2018, (SWD(2018) 137 final) https://ec.europa.eu/digital-single-market/en/news/communication-artificial-intelligence-europe.

  2. 2.

    ExpliClas API: https://demos.citius.usc.es/ExpliClasAPI/.

  3. 3.

    ExpliClas Web Client: https://demos.citius.usc.es/ExpliClas/.

  4. 4.

    Open University (OU) website: http://www.open.ac.uk/.

  5. 5.

    OU Open Data: https://analyse.kmi.open.ac.uk/open_dataset#data.

References

  1. Agudo-Peregrina, Á.F., Hernández-García, Á., Iglesias-Pradas, S.: Predicting academic performance with learning analytics in virtual learning environments: a comparative study of three interaction classifications. In: 2012 International Symposium on Computers in Education (SIIE), pp. 1–6. IEEE (2012)

    Google Scholar 

  2. Aldowah, H., Al-Samarraie, H., Fauzy, W.M.: Educational data mining and learning analytics for 21st century higher education: a review and synthesis. Telematics Inform. 37, 13–49 (2019). https://doi.org/10.1016/j.tele.2019.01.007

    Article  Google Scholar 

  3. Alonso, J.M., Castiello, C., Mencar, C.: A bibliometric analysis of the explainable artificial intelligence research field. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91473-2_1

    Chapter  Google Scholar 

  4. Alonso, J.M., Bugarín, A.: ExpliClas: automatic generation of explanations in natural language for WEKA classifiers. In: 2019 IEEE International Conferences on Fuzzy Systems, pp. 1–6. IEEE (2019)

    Google Scholar 

  5. Alonso, J.M., Castiello, C., Mencar, C.: Interpretability of fuzzy systems: current research trends and prospects. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 219–237. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_14

    Chapter  Google Scholar 

  6. Casalino, G., Castiello, C., Del Buono, N., Esposito, F., Mencar, C.: Q-matrix extraction from real response data using nonnegative matrix factorizations. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10404, pp. 203–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62392-4_15

    Chapter  Google Scholar 

  7. Castellano, G., Fanelli, A., Roselli, T.: Mining categories of learners by a competitive neural network. In: Proceedings of International Joint Conference on Neural Networks, IJCNN 2001 (Cat. No. 01CH37222), vol. 2, pp. 945–950. IEEE (2001)

    Google Scholar 

  8. Dutt, A., Ismail, M.A., Herawan, T.: A systematic review on educational data mining. IEEE Access 5, 15991–16005 (2017)

    Article  Google Scholar 

  9. Eibe, F., Hall, M., Witten, I.: The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  10. Elbadrawy, A., Polyzou, A., Ren, Z., Sweeney, M., Karypis, G., Rangwala, H.: Predicting student performance using personalized analytics. Computer 49(4), 61–69 (2016)

    Article  Google Scholar 

  11. de-la Fuente-Valentín, L., Pardo, A., Hernández, F.L., Burgos, D.: A visual analytics method for score estimation in learning courses. J. UCS 21(1), 134–155 (2015)

    Google Scholar 

  12. Gonçalves, A.F.D., Maciel, A.M.A., Rodrigues, R.L.: Development of a data mining education framework for visualization of data in distance learning environments. In: The 29th International Conference on Software Engineering and Knowledge Engineering, Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, 5–7 July 2017, pp. 547–550 (2017). https://doi.org/10.18293/SEKE2017-130

  13. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). https://doi.org/10.1145/3236009

    Article  Google Scholar 

  14. Gunning, D.: Explainable Artificial Intelligence (XAI). Technical report, Defense Advanced Research Projects Agency (DARPA), Arlington, USA (2016). DARPA-BAA-16-53

    Google Scholar 

  15. Hernández-García, Á., González-González, I., Jiménez-Zarco, A.I., Chaparro-Peláez, J.: Visualizations of online course interactions for social network learning analytics. Int. J. Emerging Technol. Learn. (iJET) 11(07), 6–15 (2016)

    Article  Google Scholar 

  16. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Disc. 19(3), 293–319 (2009). https://doi.org/10.1007/s10618-009-0131-8

    Article  MathSciNet  Google Scholar 

  17. Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci. Data 4, 170171 (2017)

    Article  Google Scholar 

  18. Mencar, C., Alonso, J.M.: Paving the way to explainable artificial intelligence with fuzzy modeling. In: Fullér, R., Giove, S., Masulli, F. (eds.) WILF 2018. LNCS (LNAI), vol. 11291, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12544-8_17

    Chapter  Google Scholar 

  19. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  20. Moore, J.L., Dickson-Deane, C., Galyen, K.: E-learning, online learning, and distance learning environments: are they the same? Internet High. Educ. 14(2), 129–135 (2011)

    Article  Google Scholar 

  21. Nen-Fu, H., et al.: The clustering analysis system based on students’ motivation and learning behavior. In: 2018 Learning With MOOCS (LWMOOCS), pp. 117–119. IEEE (2018)

    Google Scholar 

  22. Nieto, Y., García-Díaz, V., Montenegro, C., Crespo, R.G.: Supporting academic decision making at higher educational institutions using machine learning-based algorithms. Soft Comput. 23, 4145–4153 (2019)

    Article  Google Scholar 

  23. Paiva, R., Bittencourt, I.I., Lemos, W., Vinicius, A., Dermeval, D.: Visualizing learning analytics and educational data mining outputs. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 251–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93846-2_46

    Chapter  Google Scholar 

  24. Preidys, S., Sakalauskas, L.: Analysis of students’ study activities in virtual learning environments using data mining methods. Technol. Econ. Dev. Econ. 16(1), 94–108 (2010)

    Article  Google Scholar 

  25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  26. Rabelo, T., Lama, M., Amorim, R.R., Vidal, J.C.: SmartLAK: a big data architecture for supporting learning analytics services. In: 2015 IEEE Frontiers in Education Conference (FIE), pp. 1–5. IEEE (2015)

    Google Scholar 

  27. Romero, C., Ventura, S.: Educational data science in massive open online courses. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 7(1), e1187 (2017)

    Article  Google Scholar 

  28. Sun, X., Zhou, W., Xiang, Q., Cui, B., Jin, Y.: Research on big data analytics technology of MOOC. In: 2016 11th International Conference on Computer Science and Education (ICCSE), pp. 64–68. IEEE (2016)

    Google Scholar 

  29. Trillas, E., Eciolaza, L.: Fuzzy Logic: An Introductory Course for Engineering Students. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14203-6

    Book  Google Scholar 

  30. Wolff, A., Zdrahal, Z., Nikolov, A., Pantucek, M.: Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In: Proceedings of the Third International Conference on Learning Analytics and Knowledge, pp. 145–149. ACM (2013)

    Google Scholar 

  31. Xu, N., Ruan, B.: An application of big data learning analysis based on MOOC platform. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 698–702. IEEE (2018)

    Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgments

Jose M. Alonso is Ramón y Cajal Researcher (RYC-2016-19802). This research was also funded by the Spanish Ministry of Science, Innovation and Universities (grants RTI2018-099646-B-I00, TIN2017-84796-C2-1-R and TIN2017-90773-REDT) and the Galician Ministry of Education, University and Professional Training (grants ED431F 2018/02, ED431C 2018/29 and “accreditation 2016–2019, ED431G/08”) which is co-funded by the European Regional Development Fund (ERDF/FEDER program).

Gabriella Casalino is member of the INdAM Research group GNCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Casalino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alonso, J.M., Casalino, G. (2019). Explainable Artificial Intelligence for Human-Centric Data Analysis in Virtual Learning Environments. In: Burgos, D., et al. Higher Education Learning Methodologies and Technologies Online. HELMeTO 2019. Communications in Computer and Information Science, vol 1091. Springer, Cham. https://doi.org/10.1007/978-3-030-31284-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31284-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31283-1

  • Online ISBN: 978-3-030-31284-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics