Skip to main content

The Diversification of Extant Angiosperms in the South America Dry Diagonal

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

The evolutionary processes leading to lineage diversification in Neotropical plants are still poorly understood. Here, we provide a synthesis of phylogeographic patterns and unravel whether the Neogene geological events or the Quaternary climatic changes drove lineage diversification of Angiosperms in the South America dry diagonal. Despite the high number of plant species in the dry diagonal (~19,000) only few species (30) were studied. Major lineage divergences occurred in the Pliocene but most lineage diversifications occurred at the Early and Middle Pleistocene. The Last Glacial Maximum (LGM) may have had a more local and regional effect in differentiation among populations and patterns of genetic diversity distribution. Species responded differently to the Quaternary climate changes leading to high variation in spatial patterns in genetic diversity and phylogeographic patterns. Finally, our findings challenge the hypothesis of glacial refugia and the importance of the last glacial maximum (LGM) in the diversification of Angiosperms in the South America dry diagonal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab’Saber AN (2000) Spaces occupied by the expansion of dry climates in South America during the Quaternary ice ages. Rev Inst Geol 21:71–78

    Google Scholar 

  • Aide TM, Rivera E (1998) Geographic patterns of genetic diversity in Poulsenia armata (Moraceae): implications for the theory of Pleistocene refugia and the importance of riparian forest. J Biogeogr 25:695–705

    Google Scholar 

  • Ballesteros-Mejia L, Lima NE, Lima-Ribeiro MS, Collevatti RG (2016) Pollination mode and mating system explain patterns in genetic differentiation in Neotropical plants. PLoS One 11:e0158660

    PubMed  PubMed Central  Google Scholar 

  • Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27

    Google Scholar 

  • Behling H (2003) Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Veg Hist Archaeobotany 12:263–270

    Google Scholar 

  • Behling H, Hooghiemstra H (2000) Holocene Amazon rainforest-savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. J Quat Sci 15:687–695

    Google Scholar 

  • Brown KS, Ab’Saber AN (1979) Ice-age refuges and evolution in the neotropics: correlation of paleoclimatological, geomorphological and pedological data with modern biological endemism. Paleoclimas 5:1–30

    Google Scholar 

  • Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R et al (2008) The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Mol Ecol 17:3147–3159

    CAS  PubMed  Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM et al (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1411

    PubMed  Google Scholar 

  • Colinvaux PA, de Oliveira PE, Bush MB (2000) Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169

    Google Scholar 

  • Colinvaux PA, DeOliveira PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88

    CAS  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2003) Evidences for multiple maternal lineages of Caryocar brasiliense populations in the Brazilian Cerrado based on the analysis of chloroplast DNA sequences and microsatellite haplotype variation. Mol Ecol 12:105–115

    CAS  PubMed  Google Scholar 

  • Collevatti RG, Terribile LV, Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, Diniz-Filho JAF (2013a) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. J Biogeogr 40:345–358

    Google Scholar 

  • Collevatti RG, Lima-Ribeiro MS, Diniz-Filho JAF, De Oliveira G, Dobrovolski R, Terribile LC (2013b) Stability of Brazilian seasonally dry forests under climate change: inferences for long-term conservation. Am J Plant Sci 4:792–805

    Google Scholar 

  • Collevatti RG, Lima-Ribeiro MS, Souza-Neto AC, Franco AA, de Oliveira G, Terribile LC (2012a) Recovering the demographical history of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modeling and coalescent analyses. Nat Conserv 10:169–176

    Google Scholar 

  • Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, de Oliveira G, Rangel TF et al (2012b) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol 21:5845–5863

    PubMed  Google Scholar 

  • Collevatti RG, Terribile LC, Rabelo SG, Lima-Ribeiro MS (2015) Relaxed random walk model coupled with ecological niche modeling unravel the dispersal dynamics of a Neotropical savanna tree species in the deeper Quaternary. Front Plant Sci 6:1–15

    Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Google Scholar 

  • DRYFLOR (2016) Plant diversity patterns in Neotropical dry forests and their conservation implications. Science 353:1383–1387

    Google Scholar 

  • Forzza RC, Baumgratz JFA, Bicudo CEM, Canhos DAL, Carvalho JAA, Coelho MAN et al (2012) New Brazilian floristic list highlights conservation Challenges. Bioscience 62:39–45

    Google Scholar 

  • Furley P, Ratter J (1988) Soil resources and plant communities of the central Brazilian cerrado and their development. J Biogeogr 15:97–108

    Google Scholar 

  • Haberle SG, Maslin MA (1999) Late Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon fan, ODP site 932. Quat Res 51:27–38

    Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    CAS  PubMed  Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    CAS  PubMed  Google Scholar 

  • Hooghiemstra H, van der Hammen T (1998) Neogene and Quaternary development of the Neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Sci Rev 44:147–183

    Google Scholar 

  • IBGE (2019) Diomas e Sistemas Marinhos Costeiros do Brasil 1:250.000. Instituto Brasileiro de Geografia e Estatística. Available at https://www.ibge.gov.br/geociencias/informacoes-ambientais/15842-biomas.html?=&t=downloads

  • Lima JS, Telles MPC, Chaves LJ, Lima-Ribeiro MS, Collevatti RG (2017) Demographic stability and high historical connectivity explain the diversity of a savanna tree species in the Quaternary. Ann Bot 119:645–657

    PubMed  PubMed Central  Google Scholar 

  • Lima NE, Lima-Ribeiro MS, Tinoco CF, Terribile LC, Collevatti RG (2014) Phylogeography and ecological niche modelling, coupled with the fossil pollen record, unravel the demographic history of a Neotropical swamp palm through the Quaternary. J Biogeogr 41:673–686

    Google Scholar 

  • Luebert F, Muller LAH (2015) Effects of mountain formation and uplift on biological diversity. Front Genet 6:1–2

    Google Scholar 

  • Luebert F, Weigend M (2014) Phylogenetic insights into Andean plant diversification. Front Ecol Evol 2:1–17

    Google Scholar 

  • Lugo AE, Medina E, Trejo-Torres CJ, Helmer E (2006) Botanical and ecological basis for the resilience of antillean dry forests. In: Pennington RT, Ratter JA (eds) Neotropical savannas and seasonally dry forests plant diversity, biogeography, and conservation. Taylor & Francis, Boca Raton, FL, pp 359–381

    Google Scholar 

  • Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. J Quat Sci 19:713–720

    Google Scholar 

  • Mayle FE, Beerling DJ, Gosling WD, Bush MB (2004) Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philos Trans R Soc Lond B 359:499–514

    CAS  Google Scholar 

  • Mayle FE, Langstroth RP, Fisher RA, Meir P (2007) Long-term forest–savannah dynamics in the Bolivian Amazon: implications for conservation. Philos Trans R Soc Lond B 362:291–307

    Google Scholar 

  • Melo WA, Lima-Ribeiro MS, Terribile LC, Collevatti RG (2016) Coalescent simulation and paleodistribution modeling for Tabebuia rosealba do not support South American dry forest refugia hypothesis. PLoS One 11:e0159314

    PubMed  PubMed Central  Google Scholar 

  • Miranda PLS, Oliveira-Filho A, Pennington RT, Neves D, Baker T, Dexter KG (2018) Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Global Ecol Biogeogr 27:899–912

    Google Scholar 

  • Mooney HA, Bullock SH, Medina E (1995) Introduction. In: Mooney HA, Bullock SH, Medina E (eds) Dry tropical forests. Cambridge University Press, Cambridge

    Google Scholar 

  • Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • Novaes RML, De Lemos JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol Ecol 19:985–998

    PubMed  Google Scholar 

  • Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141–194

    Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and wood flora of the bioma Cerrado. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical Savanna. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911

    CAS  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Prado DE, Pendry CA, Pell S, Butterworth CA (2004) Historical climate change and speciation: Neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos Trans R Soc Lond Ser B Biol Sci 359:515–538

    Google Scholar 

  • Pennington RT, Lavin M, Oliveira A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457

    Google Scholar 

  • Pennington RT, Lewis GP, Ratter JA (2006) An overview of the plant diversity, biogeography and conservation of Neotropical savannas and seasonally dry Forests. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. Taylor & Francis, Boca Raton, FL, pp 1–29

    Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273

    Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of Species Distributions in the Dry Seasonal Forests of South-America. Ann Mo Bot Gard 80:902–927

    Google Scholar 

  • Prance GT (1973) Phytogeographic support tor the theory of Pleistocene forest refuges in the Amazon Basin, based on evidente from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amaz 3:5–28

    Google Scholar 

  • Ramos ACS, Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB (2007) Phylogeography of the tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of Quaternary climate changes in the Brazilian Cerrado. Ann Bot 100:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro F (2006) Biodiversity patterns of the woody vegetation of the Brazilian Cerrado. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. Taylor & Francis, Boca Raton, FL, pp 31–66

    Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Google Scholar 

  • Ribeiro PC, Lemos JP, Buzatti RSD, Lovato MB, Heuertz M (2016) Species-specific phylogeographical patterns and Pleistocene east-west divergence in Annona (Annonaceae) in the Brazilian Cerrado. Bot J Linn Soc 181:21–36

    Google Scholar 

  • Rull V (2008) Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17:2722–2729

    PubMed  Google Scholar 

  • Rull V (2011) Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol 26:508–513

    Google Scholar 

  • Rull V (2018) Neotropical diversification: historical overview and conceptual insights. In: Rull V, Carnaval A (eds) Neotropical Diversification. Springer, Berlin

    Google Scholar 

  • Salgado-Labouriau ML (1997) Late Quaternary palaeoclimate in the savannas of South America. J Quat Sci 12:371–379

    Google Scholar 

  • Sobral-Souza T, Lima-Ribeiro MS, Solferini VN (2015) Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol Ecol Res 29:643–655

    Google Scholar 

  • Souza-Neto AC, Cianciaruso MV, Collevatti RG (2016) Habitat shifts shaping the diversity of a biodiversity hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. J Biogeogr 43:340–350

    Google Scholar 

  • Souza HA, Collevatti RG, Lima-Ribeiro MS, Lemos-Filho JP, Lovato MB (2017) A large historical refugium explains spatial patterns of genetic diversity in a Neotropical savanna tree species. Ann Bot 119:239–252

    PubMed  Google Scholar 

  • Summerhayes C, Charman D (2014) Introduction to Holocene climate change: new perspectives. J Geol Soc Lond 172:251–253

    Google Scholar 

  • Sunderland T, Apgaua D, Baldauf C, Blackie R, Colfer C, Cunningham AB, Dexter K, Djoudi H, Gautier D, Gumbo D, Ickowitz A, Kassa H, Parthasarathy N, Pennington RT, Paumgarten F, Pulla S, Sola P, TNG D, Waeber P, Wilmé L (2015) Global dry forests: a prologue. Int For Rev 17:1–9

    Google Scholar 

  • Tinoco CF, Lima NE, Lima-Ribeiro MS, Collevatti RG (2015) Research and partnerships in studies on population genetics of Neotropical plants: a scientometric evaluation. Biochem Syst Ecol 61:357–365

    CAS  Google Scholar 

  • The Nature Conservancy (2009) Terrestrial ecoregions of the world. Available at http://maps.tnc.org/files/metadata/TerrEcos.xml. Accessed 15 Dec 2017

  • van der Hammen T (1974) The pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26

    Google Scholar 

  • van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:247–261

    Google Scholar 

  • Vanzolini PE (1963) Problemas faunisticos do Cerrado, p. 307–320. Ferri MG (ed) Simpósio sôbre o Cerrado. Universidade de São Paulo, São Paulo, 469 p

    Google Scholar 

  • Vanzolini PE (1974) Ecological and geographical distribution of lizards in Pernambuco, northeastern Brazil (Sauria). Pap Avulsos Zool 28:61–90

    Google Scholar 

  • Vieira FA, Novaes RML, Fajardo CG, Santos RM, Almeida HS, Carvalho D et al (2015) Holocene southward expansion in seasonally dry tropical forests in South America: phylogeography of Ficus bonijesulapensis (Moraceae). Bot J Linn Soc 177:189–201

    Google Scholar 

  • Vitorino LC, Lima-Ribeiro MS, Terribile LC, Collevatti RG (2016) Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM. BMC Evol Biol 16:1–15

    Google Scholar 

  • Vitorino LC, Lima-Ribeiro MS, Terribile LC, Collevatti RG (2018) Demographical expansion of Handroanthus ochraceus in the Cerrado during the Quaternary: implications for the genetic diversity of Neotropical trees. Biol J Linn Soc Lond 123:561–577

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants to the research network Rede Cerrado CNPq/PPBio (project no. 457406/2012-7) and CAPES/PROCAD (project no. 88881.068425/2014-01). NEL received a CAPES/PNPD fellowship. RGC has continuously been supported by productivity grant from CNPq, which we gratefully acknowledge. We thank Toby Pennington for helpful comments in the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collevatti, R.G., Lima, N.E., Vitorino, L.C. (2020). The Diversification of Extant Angiosperms in the South America Dry Diagonal. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_21

Download citation

Publish with us

Policies and ethics