Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 683 Accesses

Abstract

In this chapter, the compatibility of NOMA will be introduced by discussing the applications of NOMA to various techniques, such as heterogeneous networks (HetNets), cognitive radio networks (CRNs), and multiple-input multiple-output (MIMO). Particularly, the average performance of NOMA enabled HetNets will be provided as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The aim is to avoid sophisticated MIMO-NOMA design in macro cells.

  2. 2.

    The OMA benchmark adopted in this treatise is that by dividing the two users in equal time/frequency slots.

  3. 3.

    Note that when M = N, ZF-NOMA achieves the same performance as SA-NOMA (Ding et al. 2016b).

  4. 4.

    Figure 3.9 is focused on the performance of User n, since the QoS requirements have been guaranteed with the aid of appropriate PA (Ding et al. 2016b).

References

  • Adhikary, A., Dhillon, H. S., & Caire, G. (2015). Massive-MIMO meets HetNet: Interference coordination through spatial blanking. IEEE Journal on Selected Areas in Communications, 33, 1171–1186.

    Article  Google Scholar 

  • Ali, S., Hossain, E., & Kim, D. I. (2017). Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation. IEEE Access, 5, 565–577.

    Article  Google Scholar 

  • Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32, 1065–1082.

    Article  Google Scholar 

  • Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013). Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of IEEE Intelligent Signal Processing and Communications Systems (ISPACS) (pp. 770–774).

    Google Scholar 

  • Chen, Z., Ding, Z., Dai, X., & Karagiannidis, G. K. (2016). On the application of quasi-degradation to MISO-NOMA downlink. IEEE Transactions on Signal Processing, 64, 6174–6189.

    Article  MathSciNet  Google Scholar 

  • Choi, J. (2015). Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Transactions on Communications, 63, 791–800.

    Article  Google Scholar 

  • Choi, J. (2016). On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Transactions on Wireless Communications, 15, 3226–3237.

    Article  Google Scholar 

  • Ding, Z., Adachi, F., & Poor, H. V. (2016a). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15, 537–552.

    Article  Google Scholar 

  • Ding, Z., Dai, L., & Poor, H. V. (2016b). MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access, 4, 1393–1405.

    Article  Google Scholar 

  • Ding, Z., Fan, P., & Poor, H. V. (2016c). Impact of user pairing on 5G non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 65, 6010–6023.

    Article  Google Scholar 

  • Ding, Z., & Poor, H. V. (2016). Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Processing Letters, 23, 629–633.

    Article  Google Scholar 

  • Ding, Z., Schober, R., & Poor, H. V. (2016d). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15, 4438–4454.

    Article  Google Scholar 

  • Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21, 1501–1505.

    Article  Google Scholar 

  • Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97, 894–914.

    Google Scholar 

  • Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th edn.). New York: Academic.

    MATH  Google Scholar 

  • Hanif, M. F., Ding, Z., Ratnarajah, T., & Karagiannidis, G. K. (2016). A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Transactions on Signal Processing, 64, 76–88.

    Article  MathSciNet  Google Scholar 

  • Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98, 403–414.

    Article  Google Scholar 

  • Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).

    Google Scholar 

  • Hosseini, K., Yu, W., & Adve, R. S. (2014). Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE Journal of Selected Topics in Signal Processing, 8, 930–941.

    Article  Google Scholar 

  • Huh, H., Tulino, A. M., & Caire, G. (2012). Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Transactions on Information Theory, 58, 2911–2934.

    Article  MathSciNet  Google Scholar 

  • Jo, H.-S., Sang, Y. J., Xia, P., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11, 3484–3495.

    Article  Google Scholar 

  • Kim, B., Lim, S., Kim, H., Suh, S., Kwun, J., Choi, S., et al. (2013). Non-orthogonal multiple access in a downlink multiuser beamforming system. In Proceedings of Military Communications Conference (MILCOM), pp. 1278–1283.

    Google Scholar 

  • Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52, 186–195.

    Article  Google Scholar 

  • Liu, L., Yuen, C., Guan, Y. L., & Li, Y. (2016a). Capacity-achieving iterative LMMSE detection for MIMO-NOMA systems. In IEEE Proceedings of International Communication Conference (ICC), Kuala Lumpur, Malaysia.

    Google Scholar 

  • Liu, W., Jin, S., Wen, C. K., Matthaiou, M., & You, X. (2016b). A tractable approach to uplink spectral efficiency of two-tier massive MIMO cellular HetNets. IEEE Communications Letters, 20, 348–351.

    Article  Google Scholar 

  • Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016c). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953, April 2016.

    Google Scholar 

  • Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016d). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65, 10152–10157.

    Article  Google Scholar 

  • Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016e). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20, 1465–1468.

    Google Scholar 

  • Ma, C., Wu, W., Cui, Y., & Wang, X. (2015). On the performance of successive interference cancellation in D2D-enabled cellular networks. In Proceedings of IEEE International Conference on Computer Communication (INFOCOM), Kowloon, Hong Kong (pp. 37–45)

    Google Scholar 

  • Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018a). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35, 40–58.

    Article  Google Scholar 

  • Qin, Z., Gao, Y., & Parini, C. G. (2016a). Data-assisted low complexity compressive spectrum sensing on real-time signals under sub-Nyquist rate. IEEE Transactions on Wireless Communications, 15, 1174–1185.

    Article  Google Scholar 

  • Qin, Z., Gao, Y., Plumbley, M., & Parini, C. (2016b). Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes. IEEE Transactions on Signal Processing, 64, 3106–3117.

    Article  MathSciNet  Google Scholar 

  • Qin, Z., Liu, Y., Li, Y., & McCann, J. A. (2019). Performance analysis of clustered LoRa networks. In IEEE Transactions on Vehicular Technology, 68(8), 7616–7629, Aug. 2019.

    Google Scholar 

  • Qin, Z., Yue, X., Liu, Y., Ding, Z., & Nallanathan, A. (2018b). User association and resource allocation in unified NOMA enabled heterogeneous ultra dense networks. IEEE Communications Magazine, 56, 86–92.

    Article  Google Scholar 

  • Qureshi, S., Kim, H., & Hassan, S. A. (2016). MIMO uplink NOMA with successive bandwidth division. In Proceedings of IEEE Wireless Communication and Networking Conference, MILCOM, Doha

    Google Scholar 

  • Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In IEEE Proceedings of Vehicle Technology Conference (VTC), Dresden (pp. 1–5).

    Google Scholar 

  • Sun, Q., Han, S., I, C.-L., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4, 405–408.

    Google Scholar 

  • Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Transactions on Wireless Communications, 15, 7244–7257.

    Article  Google Scholar 

  • Ye, Q., Bursalioglu, O. Y., Papadopoulos, H. C., Caramanis, C., & Andrews, J. G. (2015). User association and interference management in massive MIMO HetNets. arXiv preprint arXiv:1509.07594.

    Google Scholar 

  • Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & Alonso-Zarate, J. (2016). NOMA-based D2D communications towards 5G. In IEEE Proceedings of Global Communication Conference (GLOBECOM), Washington (pp. 1–6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Qin, Z., Ding, Z. (2020). Compatibility in NOMA. In: Non-Orthogonal Multiple Access for Massive Connectivity. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-30975-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30975-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30974-9

  • Online ISBN: 978-3-030-30975-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics