Skip to main content

Neurodevelopmental Disorders in Children

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy

Abstract

As neurodevelopmental and neuro-immune-psychiatric issues are increasing at an alarming rate, infants and children are among the most vulnerable populations. Understanding the anatomic and physiologic differences between children and adults is important in addressing nutritional support for metabolic and detoxification pathways, neurotransmitters, and genetic individuality. Supporting gut, brain, and immune health offers children the opportunity to reach their optimal potential.

Children are more vulnerable to toxins and toxicants than adults. This begins at conception and continues as a fetus in the womb. Infants have an immature and porous blood-brain barrier, their gut microbiota colonizes over several years, liver and detoxification pathways are not yet mature, and the immune system continues to develop into adolescence. Due to their smaller size, infants and children eat and breathe more than adults and have a higher metabolic rate making them more susceptible to adverse exposures. Changes in obstetrics, farming, food production, health care, and the sheer number of chemicals, pesticides, and toxins in our daily life contribute to the rapid growth in neurologic, developmental, and autoimmune issues our children face. We need an increasing number of tools to address these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexiou GA, Sfakianos G, Prodromou N. Pediatric head trauma. J Emerg Trauma Shock. 2011;4(3):403.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Georgieff M. Nutrition and the developing brain: nutrient priorities and measurements 1′2′3′. Am J Clin Nutr. 2007;85(5):614s–20s.

    CAS  PubMed  Google Scholar 

  3. Ivarsson MA. Differentiation and functional regulation of human fetal NK cells. J Clin Invest. 2013;123(9):3889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neu J. The microbiome and its impact on disease in the preterm patient. Curr Pediatr Rep. 2013;1(4):215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kolokotroni O, et al. Asthma and atopy in children born by caesarean section: effect modification by family history of allergies-a population based cross-sectional study. BMC Pediatr. 2012;12:179.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Houghteling P, Walker W. Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294–307.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mueller NT. The infant microbiome development: mom. Trends Mol Med. 2015;21(2):109–17.

    Article  PubMed  Google Scholar 

  8. Grandjean P, Landrigan PJ. Neurobehavioral effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Environmental Working Group. Body burden: the pollution in newborns. 14 July 2005. Accessed: https://www.ewg.org/research/body-burden-pollution-newborns.

  10. Jaishankar M, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mesquita M, et al. Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2 exposure. EXCLI J. 2016;15:256–67.

    PubMed  PubMed Central  Google Scholar 

  12. Chasapis CT, et al. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521–34.

    Article  CAS  PubMed  Google Scholar 

  13. Fulgenzi A, et al. Aluminium involvement in neurotoxicity. Biomed Res Int. 2014;2014:758323.

    PubMed  PubMed Central  Google Scholar 

  14. Singh N, Gupta VK, Kumar A, Sharma B. Synergistic effects of heavy metals and pesticides in living systems. Front Chem. 2017;5:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen C, et al. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect. 2006;114(2):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gandhi OP, Morgan LL, de Salles AA, Han Y-Y, Herberman RB, Davis DL. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med. 2012;31:34–51. https://doi.org/10.3109/15368378.2011.622827.

    Article  PubMed  Google Scholar 

  17. Hardell L. World Health Organization, radiofrequency radiation and health-a hard nut to crack (review). Int J Oncol. 2017;51(2):405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carlo GL, Mariea TJ. Wireless radiation in the aetiology and treatment of autism: clinical observations and mechanisms. J Austr Coll Nutr Environ Med. 2007;26(2):3–7.

    Google Scholar 

  19. Kaplan S, Davis D. Controversies on EMF in neurobiology of organisms. J Chem Neuroanat. 2016;75(PtB):41–2.

    Article  PubMed  Google Scholar 

  20. Yehuda R, et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biopsych. 2016;80(5):372–80.

    CAS  Google Scholar 

  21. University of Southampton. Risk of obesity influenced by changes in our genes. ScienceDaily. 26 Apr 2017. www.sciencedaily.com/releases/2017/04/170426093316.htm.

  22. Sage C, Burgio E. Electromagnetic fields, pulsed radiofrequency radiation, and epigenetics: how wireless technologies may affect childhood development. Child Dev. 2018;89:129–36.

    Article  PubMed  Google Scholar 

  23. Lane M, Robker RL, Robertson SA. Parenting from before conception. Science. 2014;345(6198):756–60.

    Article  CAS  PubMed  Google Scholar 

  24. Matthews J. Nourishing hope for autism: nutrition and diet guide for healing our children. San Francisco: Healthful Living Media; 2008. p. 143–4.

    Google Scholar 

  25. Owens LJ, France KG, Wiggs L. Behavioural and cognitive-behavioural interventions for sleep disorders in infants and children: a review. Sleep Med Rev. 1999;3(4):281–302.

    Article  PubMed  Google Scholar 

  26. Shannon Scott M. Kids and sleep loss. In: Mental health for the whole child. New York, London: W. W. Norton & Company; 2013. p. 33.

    Google Scholar 

  27. Astill RG, et al. Sleep, cognition, and behavioral problems in school-age children: a century of research meta-analyzed. Psychol Bull. 2012;138(6):1109–38.

    Article  PubMed  Google Scholar 

  28. Stefanatos G. Regression in autistic spectrum disorders. Neuropsychol Rev. 2008;18(4):305–19.

    Article  PubMed  Google Scholar 

  29. Rossignol DA, Frye RE. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individual with autism. Front Physiol. 2014;5:150. Review Article. Published: 22 Apr 2014. https://doi.org/10.3389/fphys.2014.00150.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bock K. Healing the new childhood epidemics: autism, ADHD, asthma, and allergies: the groundbreaking program for the 4-A disorders. New York: Ballantine Publishing; 2008.

    Google Scholar 

  31. Curl C, Fenske R, Elgethun K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Env Health Perspect. 2003;111:377–82.

    Article  CAS  Google Scholar 

  32. Bauman MD, et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry. 2013;3:278.

    Article  CAS  Google Scholar 

  33. Coren LA, et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry. 2008;64(7):583–8.

    Article  CAS  Google Scholar 

  34. Takano T. Role of microglia in autism: recent advances. Dev Neurosci. 2015;37(3):195–202.

    Article  CAS  PubMed  Google Scholar 

  35. Estes ML, McAllister AK. Maternal Th17 cells take a toll on baby’s brain. Science. 2016;351(6276):919–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gustavo C, et al. Association of gestational maternal hypothyroxinemia and increased autism risk. Ann Neurol. 2013;74(5):733–42.

    Article  CAS  Google Scholar 

  37. Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics. 2011;128(2):344–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ornoy AL, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol. 2015;56:155–69.

    Article  CAS  PubMed  Google Scholar 

  39. Greenberg JA. Folic acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol. 2011;4(2):52–9.

    PubMed  PubMed Central  Google Scholar 

  40. Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks-a possible new overlap syndrome. Pediatric Health Med Ther. 2015;6:153–66.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mumper EA. Call to action: recognizing and treating medical problems of children with autism. N Am J Med Sci. 2012;5(3):180–4.

    Article  Google Scholar 

  42. Ghalichi F, et al. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J Pediatr. 2016;12(4):436–42.

    Article  CAS  PubMed  Google Scholar 

  43. Hsiao EY, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ashwood P, Anthony A, Torrente F, Wakefield AJ. Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10. J Clin Immunol. 2004;24(6):664–73.

    Article  CAS  PubMed  Google Scholar 

  46. Bock K, Sptauth C. Healing the new childhood epidemics. In: Ballantine Books. New York; 2008. p. 249.

    Google Scholar 

  47. Giulivi C, et al. Mitochondrial dysfunction in autism. JAMA. 2010;304(21):2389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rose S, et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry. 2012;2:e134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism disorders; immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry. 2012;17(4):389–401.

    Article  CAS  PubMed  Google Scholar 

  50. Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290–314.

    Article  CAS  PubMed  Google Scholar 

  51. Naviaux RK. Metabolic features of the cell danger response. Mitochondrion. 2014;16:7–17. 6 Aug 2013.

    Article  CAS  PubMed  Google Scholar 

  52. Naviaux RK. Antipurinergic therapy for autism-an in-depth review. Mitochondrion. 2018;43:1–15. 7 Dec 2017.

    Article  CAS  PubMed  Google Scholar 

  53. Kelley R. Evaluation and treatment of patients with autism and mitochondrial disease. Kennedy Krieger Institute; June 13, 2009, Baltimore, MD.

    Google Scholar 

  54. Haas R, et al. Supporting children with mitochondrial disorders. ICAN. 2014;6(3):160–3.

    Google Scholar 

  55. Esparham AE, et al. Nutritional and metabolic biomarkers in autism spectrum disorders: an exploratory study. Integr Med (Encinitas). 2015;14(2):40–53.

    Google Scholar 

  56. Russo AJ. Increased copper in individuals with autism normalizes post zinc therapy more efficiently in individuals with concurrent GI disease. Nutr Metab Insights. 2011;4:49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsaluchidu S, et al. Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry. 2008;8(Suppl 1):S5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Rose S, et al. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagn Ther. 2018;22:571–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piras IS, et al. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with autism spectrum disorder. Brain Behav Immun. 2014;38:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shaw W. Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: a case study. Integr Med. 2017;16(1):50–7.

    Google Scholar 

  61. Jackson J, et al. Urine pyrroles and other orthomolecular tests in patients with ADD/ADHD. J Orthomol Med. 2010;25(1):39–42.

    Google Scholar 

  62. Atladottir HO, et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics. 2009;124(2):687–94.

    Article  PubMed  Google Scholar 

  63. Wu S, et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:322–32.

    Article  PubMed  Google Scholar 

  64. Geschwind D. Autism: many genes, common pathways? Cell. 2008;135(3):391–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wong CC. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioral traits. Mol Psychiatry. 2014;19(4):495–503.

    Article  CAS  PubMed  Google Scholar 

  66. Bernier R, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158(2):263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Elsamanoudy A, et al. The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. J Microsc Ultrastruct. 2016;4:115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wacklin P, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One. 2011;6(5):e20113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peng F, Labelle LA, Rainey B, Tsongalis GJ. Single nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene are common in US Caucasian and Hispanic American populations. Int J Mol Med. 2001;8(5):509–11.

    CAS  PubMed  Google Scholar 

  70. Wang X, et al. Geographical and ethnic distributions of the MTHFR C677, A1298C and MTRR A66G gene polymorphisms in Chinese populations; a meta-analysis. PLoS One. 2016;11(4):e0152414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang T, et al. Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature. PLoS One. 2013;8(4):e59570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen CH, et al. Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders. Mol Autism. 2014;5:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. NIH genetics home reference for gene descriptions. https://ghr.nlm.nih.gov/.

  74. Kovac J, et al. Rare single nucleotide polymorphisms in the regulatory regions of the superoxide dismutase genes in autism spectrum disorder. Autism Res. 2014;7:138–44.

    Article  PubMed  Google Scholar 

  75. Jepson B, Johnson J. Changing the course of autism: a scientific approach for parents and physicians. Boulder: Sentient Publications; 2007.

    Google Scholar 

  76. Cruchet S. Truths, myths, and needs of special diets: attention-deficit/hyperactivity disorder, autism, non-celiac gluten sensitivity, and vegetarianism. Ann Nutr Metab. 2016;68(Suppl 1):43–50. Published online: 30 June 2016.

    Article  PubMed  Google Scholar 

  77. Adams J, et al. Comprehensive nutritional and dietary intervention for autism spectrum disorder-a randomized, controlled 12-month trial. Nutrients. 2018;10(3):369.

    Article  PubMed Central  CAS  Google Scholar 

  78. Whiteley P, et al. Gluten- and casein-free dietary intervention for autism spectrum conditions. Front Hum Neurosci. 2012;6:344.

    Article  PubMed  Google Scholar 

  79. Matthews J. Nourishing hope for autism. 1 Nov 2008.

    Google Scholar 

  80. Waring RH, et al. Biochemical parameters in autistic children. Dev Brain Dysfunc. 1997;10:40–3.

    Google Scholar 

  81. Buts JP, Cortjier G, Delmee M. Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J Pediatr Gastroenterol Nutr. 1993;16(4):419–25.

    Article  CAS  PubMed  Google Scholar 

  82. Mostafa GA, Al-Ayadhi LY. Reduced serum concentrations of 25-hydroxyvitamin D in children with autism: relation to autoimmunity. Licensee BioMed Central Ltd 2012. J Neuroinflammation. 2012;9:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pokorski M. Stability of ascorbyl palmitate molecule in the rat brain. J Physiol Pharmacol. 2005;56(Suppl 4):197–201.

    PubMed  Google Scholar 

  84. Shaw P, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. PNAS. 2007;104(49):19649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hoogman M, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–9. Published: 15 Feb 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Walsh WJ. Nutrient power heal your biochemistry and heal your brain. Ontario: Skyhorse Publishing; 2012, 2014. p. 128.

    Google Scholar 

  87. Amen DG. All-new revised edition healing ADD, the breakthrough program that allows you to see and heal the 7 types of ADD. 2013.

    Google Scholar 

  88. Talbott SM, et al. Effect of magnolia officinalis and phellodendron amurense (Relora) on cortisol and psychological mood state in moderately stressed subjects. J Int Soc Sport Nutr. 2013;10:37.

    Article  CAS  Google Scholar 

  89. Bouchard M, et al. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 2010;125(6):e2170–7.

    Article  Google Scholar 

  90. Arnold LE, et al. Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for. Neurotherapeutics. 2012;9(3):599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Elshorbagy H, et al. The impact of vitamin D supplementation on attention-deficit hyperactivity disorder in children. Ann Pharmacother. 2018;52(7):623–31. online ISSN: 1542-6270.

    Article  CAS  PubMed  Google Scholar 

  92. Louv R. Last child in the words: saving our children from nature-deficit disorder. In: Algonquin Books. Chapel Hill; 2005.

    Google Scholar 

  93. Medina KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicol Teratol. 2007;29(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  94. Wang HS. B6 related epilepsy during childhood. Chang Gung Med J. 2007;30(5):369–401.

    Google Scholar 

  95. Bhardwaj P, Kaushal RK, Chandel A. Biotinidase deficiency: a treatable cause of infantile seizures. J Pediatr Neurosci. 2010;5(1):82–3.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kossoff E, et al. Ketogenic diets: an update for child neurologists. J Child Neuro. 2009;24(8):979–88.

    Article  Google Scholar 

  97. Kossoff E, et al. The ketogenic and modified Atkins diets: treatments for epilepsy and other disorders. 6th ed. New York: Demos Health; 2016.

    Google Scholar 

  98. Martin K, et al. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2016;(2):CD001903.

    Google Scholar 

  99. Diala A. Fish oil intake and seizure control in children with medically resistant epilepsy. N Am J Med Sci. 2015;7(7):317–21.

    Article  Google Scholar 

  100. Osborn KE, et al. Addressing potential role of magnesium dyshomeostasis to improve treatment efficacy for epilepsy: a reexamination of the literature. J Clin Pharmacol. 2016;56(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  101. Pendo K. Vitamin D3 for the treatment of epilepsy: basic mechanisms, animal models, and clinical trials. Front Neurol. 2016;7:218.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hollo A. Correction of vitamin D deficiency improves seizure control epilepsy: a pilot study. Epilepsy Behav. 2012;24(1):131–3. 11 Apr 2012.

    Article  PubMed  Google Scholar 

  103. Zhen J. Effects of grape seed proanthocyanidin extract on pentylenetetrazole-induced kindling and associated cognitive impairment in rats. Int J Mol Med. 2014;34(2):391–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tyagi A, Delanty N. Herbal remedies, dietary supplements, and seizures. Epilepsia. 2003;44(2):228–35. Blackwell Publishing, Inc. 2003 International League against Epilepsy.

    Article  PubMed  Google Scholar 

  105. Swedo S, et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry. 1998;155:2.

    Google Scholar 

  106. Kirvan CA, et al. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham Chorea. Nat Med. 2003;9(7):914–20.

    Article  CAS  PubMed  Google Scholar 

  107. Cox CJ, Zuccolo AJ, Edwards EV, Mascaro-Blanco A, Alvarez K, Stoner J, Kiki C, Cunningham MW. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. Child Adolesc Psycopharm. 2015;25:76–85.

    Article  CAS  Google Scholar 

  108. Chang K, et al. Clinical evaluation of youth with pediatrics acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference. J Child Adolesc Psychopharmacol. 2015;25(1):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Alder R, Cohen N, Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345:99–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haskell, M.A.M. (2020). Neurodevelopmental Disorders in Children. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_30

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics