Skip to main content

A Nutritional Genomics Approach to Epigenetic Influences on Chronic Disease

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy

Abstract

While the genome contains genetic code that predisposes an individual to risks for a variety of health challenges, epigenetics or code that is “on top of the genome” dictates which of these genes are turned “on” or “off.” The use of nutritional genomics in clinical practice, and more specifically nutrigenetics, allows one to more accurately predict nutritional needs to help prevent or ameliorate diseases such as cardiometabolic, neurodegenerative, psychiatric, irritable bowel, cancer, and mitochondrial diseases. In this way, a clinician may choose appropriate dietary, lifestyle, or nutritional interventions to help prevent disease conditions and, if present, improve disease states and outcomes. For example, the presence of an ACE deletion is associated with an increased risk of salt-sensitive hypertension. For those without this deletion, salt restriction is unlikely to have an impact on hypertension, and for those with the deletion, salt restriction is an effective measure to control disease. One may also use nutrigenomics or the measurable effect on the genome through qaunitifying various biomarkers such as organic acids, amino acids, fatty acids and other laboratory measures to help improve metabolism with the use of vitamins and minerals that serve as cofactors in various biochemical pathways. Nutrigenomic SNPs and pathways serve as guidance as to which forms of a nutrient may be better tolerated and/or absorbed. For example, SNPs in the cobalamin transporters 1 and 2 (TCN1 and TCN2) predict the need for hydroxocobalamin and adenosylcobalamin, respectively. Finally, pharmacogenetics is one of the more studied areas of nutritional genomics. With the use of pharmacogenetics, a practitioner may interpret genetic information to predict a patient’s tolerance and requirements for various medications, herbals and substances. This allows the personalization of pharmaceuticals to an individual’s specific needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French T-A.C, Tai ES, Milner J, Koh W-P, Xie L, Zucker M, Buckley M, Cosgrove L, Lockett T, Fung K.Y.C, Head R. Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice. Journal of Nutrigenetics and Nutrigenomics. 2011;4(2):69–89.

    Google Scholar 

  2. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  3. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1(2):76–80.

    Article  PubMed  Google Scholar 

  4. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.

    PubMed  PubMed Central  Google Scholar 

  5. Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2013;17(1):89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruemmele FM, Garnier-Lengliné. Why are genetics important for nutrition? Lessons from epigenetic research. Ann Nutr Metab. 2012;60(suppl3):28–43.

    Google Scholar 

  7. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Devlin TM. Textbook of biochemistry with clinical correlations. 7th ed. Hoboken: John Wiley & Sons, Inc.; 2011.

    Google Scholar 

  9. Kubota T, Miyake K, Hirasawa T. The mechanisms of epigenetic modifications during DNA replication, the mechanisms of DNA replication, Stuart D, editor. InTech; 2013, https://doi.org/10.5772/51592.

  10. Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36(Pt 6):1224–31.

    Article  CAS  PubMed  Google Scholar 

  11. Ulrey CL, Liou L, Andrews LG, Tollefsbol TO. The impact of metabolism on DNA methylation. Hum Mol Genet. 2005;14(1):R139–47.

    Article  CAS  PubMed  Google Scholar 

  12. Weinhold B. Epigenetics: the science of change. Environ Health Perspect. 2006;114(3):A160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Abeelen AFM, Elias SG, Roseboom TJ, Bossuyt PMM, van der Schouw TYT, Grobbee DE, Uiterwaal CSPM. Postnatal acute famine and risk of overweight: the Dutch Hungerwinter Study. Int J Pediatrics. 2012;2012:936509. https://doi.org/10.1155/2012/936509.

    Article  Google Scholar 

  14. Ekamper P, van Poppel F, Stein AD, Bijwaard GE, Lumey LH. Prenatal famine exposure and adult mortality from cancer, cardiovascular disease, and other causes through age 63 years. Am J Epidemiol. 2015;181(4):271–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiengthong K, Ittiwut C, Muensri S, et al. NUDT15 c.415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia. Haematologica. 2016;101(1):e24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ndisang JF, Rastogi S. Cardiometabolic diseases and related complications: current status and future perspective. Biomed Res Int. 2013;2013:467682.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol. 2013;9(2):106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kei A, Miltiadous G, Bairaktari E, Hadjivassiliou M, Cariolou M, Elisaf M. Dysbetalipoproteinemia: two cases report and a diagnostic algorithm. World J Clin Cases. 2015;3(4):371–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Logue MW, et al. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68(12):1569–79.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuwano R, et al. Dynamin-binding protein gene on chromosome 10q is associated with late-onset Alzheimer’s disease. Hum Mol Genet. 2006;15(13):2170–82.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Ruiz-Narvaez E, Kraft P, Campos H. Effect of apolipoprotein E genotype and saturated fat intake on plasma lipids and myocardial infarction in the Central Valley of Costa Rica. Hum Biol. 2007;79(6):637–47.

    Article  PubMed  Google Scholar 

  22. Curti MLR, Jacob P, Borges MC, Rogero MM, Ferreira SRG. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes. 2011;2011:497401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. USDA Dietary Guidelines 2015-2020. Accessed from: https://www.choosemyplate.gov/2015-2020-dietary-guidelines-answers-your-questions.

  24. James PA, Oparil S, Carter BL, et al. Evidence-based guideline for the management of high blood pressure in adults report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    Article  CAS  PubMed  Google Scholar 

  25. Caprioli J, Mele C, Mossali C, Gallizioli LG, et al. Polymorphisms of EDNRB, ATG, and ACE genes in salt-sensitive hypertension. Can J Physiol Pharmacol. 2008;86:505–10.

    Article  CAS  PubMed  Google Scholar 

  26. Scharplatz M, Puhan MA, Steurer J, Bachmann LM. What is the impact of the ACE gene insertion/deletion (I/D) polymorphism on the clinical effectiveness and adverse events of ACE inhibitors?--protocol of a systematic review. BMC Med Genet. 2004;5:23. https://doi.org/10.1186/1471-2350-5-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernstein KE, Ong FS, Blackwell W-LB, Shah KH, Giani JF, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013;65(1):1–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care. 2015;38(Supplement 1):S8–S16. https://doi.org/10.2337/dc15-S005.

    Article  Google Scholar 

  29. Cornelis MC, Qi L, Kraft P, Hu FB. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr. 2009;89(4):1256–62. https://doi.org/10.3945/ajcn.2008.27058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr. 2000;130(2S Suppl):377S–81S.

    Article  CAS  PubMed  Google Scholar 

  31. Serrato M, Marian AJ. A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease. J Clin Investig. 1995;96(6):3005–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomàs-Moyà E, Gianotti M, Proenza AM, Lladó I. Paraoxonase 1 response to a high-fat diet: gender differences in the factors involved. Mol Med. 2007;13(3-4):203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, Stocker R. Oxidation of high density lipoproteins. I Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. J Biol Chem. 1998;273(11):6080–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ferguson JF, et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010;211(2):539–44.

    Article  CAS  PubMed  Google Scholar 

  35. José AA, et al. Adherence to the ‘Mediterranean Diet’ in Spain and its relationship with cardiovascular risk (DIMERICA Study). Nutrients. 2016;8(11):680.

    Article  CAS  Google Scholar 

  36. Darwiche G, et al. An Okinawan-Based Nordic diet improves anthropometry, metabolic control, and health-related quality of life in Scandinavian patients with type 2 diabetes: a pilot trial. Food Nutr Res. 2016;60:32594.

    Article  CAS  PubMed  Google Scholar 

  37. Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, et al. Genome Wide Association (GWA) Study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Eng J Med. 2015;373:895–907.

    Article  CAS  Google Scholar 

  39. Dina C, Meyre D, Gallina S, Durand E, Körner A, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–6.

    Article  CAS  PubMed  Google Scholar 

  40. Landgraf K, et al. FTO obesity risk variants are linked to adipocyte IRX3 expression and BMI of children - relevance of FTO variants to defend body weight in lean children? PLoS One. 2016;11(8):e0161739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol. 2014;6:1–13.

    Google Scholar 

  42. Jones MR, et al. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet. 2015;11(8):e1005455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomae BA, Eckloff BW, Freimuth RR, Wieben ED, Weinshilboum RM. Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies. Pharmacogenomics J. 2002;2:48–56.

    Article  CAS  PubMed  Google Scholar 

  44. Bittencourt PL, Marin MLC, Couto CA, Cançado ELR, Carrilho FJ, Goldberg AC. Analysis of HFE and non-HFE gene mutations in Brazilian patients with hemochromatosis. Clinics (Sao Paulo). 2009;64(9):837–41.

    Article  Google Scholar 

  45. Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013;6(4):159–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DSM-V Criteria American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, D.C.: American Psychiatric Press; 2013.

    Book  Google Scholar 

  47. American Academy of Neurology (AAN) Guidelines, American Academy of Neurology. Practice parameters for detection, diagnosis, and management of dementia (summary statements). Neurology. 2001;56:1133–1142, 1143–1153, 1154–1166.

    Google Scholar 

  48. la Monte D, Suzanne M, Wands JR. Alzheimer’s disease is type 3 diabetes–evidence reviewed. J Diabetes Sci Technol. 2008;2(6):1101–13.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K. Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010;19(16):3295–301. https://doi.org/10.1093/hmg/ddq221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scahill RI, Ridgway GR, Bartlett JW, et al. Genetic influences on atrophy patterns in familial Alzheimer’s disease: a comparison of APP and PSEN1 mutations. J Alzheimers Dis. 2013;35(1):199–212. https://doi.org/10.3233/JAD-121255.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wittchen HU. Generalized anxiety disorder: prevalence, burden, and cost to society. Depress Anxiety. 2002;16(4):162–71.

    Article  PubMed  Google Scholar 

  52. Conerly M, Grady WM. Insights into the role of DNA methylation in disease through the use of mouse models. Dis Model Mech. 2010;3(5–6):290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jirout ML, et al. Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat. Hum Mol Genet. 2010;19(13):2567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mentch SJ, Locasale JW. One carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. 2016;1363(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hewett ZL, et al. Effect of a 16-week Bikram yoga program on perceived stress, self-efficacy and health-related quality of life in stressed and sedentary adults: a randomised controlled trial. J Sci Med Sport. 2018;21(4):352–7.

    Article  PubMed  Google Scholar 

  56. Volavka J, Bilder R, Nolan K. Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004;1036:393–8.

    Article  CAS  PubMed  Google Scholar 

  57. Shouman S, Wagih M, Kamel M. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells. Cancer Biol Med. 2016;13(4):505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grossman MH, Emanuel BS, Budarf ML. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1----q11.2. Genomics. 1992;12(4):822–5.

    Article  CAS  PubMed  Google Scholar 

  59. Segall SK, et al. Janus molecule I: dichotomous effects of COMT in neuropathic vs nociceptive pain modalities. CNS Neurol Disord Drug Targets. 2012;11(3):222–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Magnesium. In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, White JD, editors. Encyclopedia of dietary supplements. 2nd ed. New York: Informa Healthcare; 2010. p. 527–537.

    Google Scholar 

  61. Magnesium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, editors. Modern nutrition in health and disease. 11th ed. Baltimore: Lippincott Williams & Wilkins; 2012. p. 159–175.

    Google Scholar 

  62. Staner L. Sleep and anxiety disorders. Dialogues Clin Neurosci. 2003;5(3):249–58.

    PubMed  PubMed Central  Google Scholar 

  63. Ershadifar T, Minaiee B, Gharooni M, Isfahani MM, Nikbakht Nasrabadi A, Nazem E, et al. Heart palpitation from traditional and modern medicine perspectives. Iranian Red Crescent Med J. 2014;16(2):e14301.

    Article  Google Scholar 

  64. Li W, et al. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol Brain. 2014;7:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fuertig R, Azzinnari D, Bergamini G, Cathomas F, Sigrist H, Seifritz E, Vavassori S, Luippold A, Hengerer B, Ceci A, Pryce CR. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: both effects are reversed by inhibition of indoleamine 2,3-dioxygenase. Brain Behav Immun. 2016;54:59–72.

    Article  CAS  PubMed  Google Scholar 

  66. Xu L, et al. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia. World J Gastroenterol: WJG. 2005;11(5):733–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lord R, Bralley A. Laboratory evaluations for integrative and functional medicine. Duluth: Metametrix; 2012.

    Google Scholar 

  68. Weber H, Scholz CJ, Domschke K, Baumann C, Klauke B, et al. Gender differences in associations of glutamate decarboxylase 1 gene (GAD1) variants with panic disorder. PLoS One. 2012;7(5):1–7.

    Google Scholar 

  69. Miao D, Steck AK, Zhang L, Guyer KM, Jiang L, Armstrong T, et al. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk. Diabetes Technol Ther. 2015;17(2):119–27. https://doi.org/10.1089/dia.2014.0186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoon J-W, Yoon C-S, Lim H-W, Huang QQ, Kang Y, Pyun KH, Hirasawa K, Sherwin RS, Jun H-S. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science. 1999;284:1183–7.

    Article  CAS  PubMed  Google Scholar 

  71. Zahavi AY, et al. Serotonin and dopamine gene variation and theory of mind decoding accuracy in major depression: a preliminary investigation. PLoS One. 2016;11:e0150872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ji Y, et al. Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics. Pharmacogenomics J. 2013;13(5):456–63.

    Article  CAS  PubMed  Google Scholar 

  73. Liang Y, Liu L, Wei H, Luo XP, Wang MT. Late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (glutaric aciduria type II). Zhonghua Er Ke Za Zhi. 2003;41(12):916–20.

    PubMed  Google Scholar 

  74. Styczeń K, et al. Study of the serum copper levels in patients with major depressive disorder. Biol Trace Elem Res. 2016;174(2):287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamamoto K, Cubells JF, Gelernter J, Benkelfat C, Lalonde P, Bloom D, Lal S, Labelle A, Turecki G, Rouleau GA, Joober R. Dopamine beta-hydroxylase (DBH) gene and schizophrenia phenotypic variability: a genetic association study. Am J Med Genet B Neuropsychiatr Genet. 2003;117B(1):33–8.

    Article  PubMed  Google Scholar 

  76. Pulikkalpura H, et al. Levodopa in Mucuna Pruriens and its degradation. Sci Rep. 2015;5:11078.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gujral N, Freeman HJ, Thomson ABR. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol: WJG. 2012;18(42):6036–59.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lebwohl B, Ludvigsson JF, Green PHR. Celiac disease and non-celiac gluten sensitivity. BMJ. 2015;351:h4347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Selleski N, Almeida LM, Almeida FC, Gandolfi L, Pratesi R, Nobrega YKM. Simplifying celiac disease predisposing HLA-DQ alleles determination by the real-time PCR method. Arq Gastroenterol. 2015;52(2):143–6.

    Article  PubMed  Google Scholar 

  82. Samsel A, Seneff S. Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy. 2013;15(4):1416–63.

    Article  CAS  Google Scholar 

  83. USDA Dietary guidelines 2015–2020. Accessed from: https://www.choosemyplate.gov/.

  84. Wacklin P, Tuimala J, Nikkila J, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One. 2014;9(4):e94863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wacklin P, Makivuokko H, Alakulppi N, Nikkila J, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One. 2011;6(5):e20113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC, Haritunians T, et al. Reprogramming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 2014;8(11):2193–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mahmood A, FitzGerald AJ, Marchbank T, Ntatsaki E, Murray D, Ghosh S, Playford RJ. Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processes. Gut. 2006;56(2):168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakatsu F, Hase K, Ohno H. Review: the role of the clathrin adaptor AP-1: polarized sorting and beyond. Membranes. 2014;4:747–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85:1185–96.

    Article  CAS  PubMed  Google Scholar 

  90. Lundius EG, et al. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons. J Neurosci. 2010;30(12):4369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wright EK, et al. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis. 2015;21(6):1219–28. PMC.

    PubMed  Google Scholar 

  92. Song WB, Lv YH, Zhang ZS, Li YN, et al. Soluble intercellular adhesion molecule-1, D-lactate and diamine oxidase in patients with inflammatory bowel disease. World J Gastroenterol: WJG. 2009;15(31):3916–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zebra Diagnostics. Histamine and histamine intolerance. SNPed. Virginia: Richmond; 2016.

    Google Scholar 

  94. Adjalla C, Lambert D, Benhayoun S, Berthelsen JG, Nicolas JP, Guéant JL, Nexo E. Nutritional biochemistry forms of cobalamin and vitamin B12 analogs in maternal plasma, milk, and cord plasma. J Nutr Biochem. 1994;5(8):406–10.

    Article  CAS  Google Scholar 

  95. Gropper S, Smith J. Advanced nutrition and human metabolism. 6th ed. Belmont: Wadsworth; 2013.

    Google Scholar 

  96. Mera PE, Escalante-Semerena JC. Multiple roles of ATP:cob(I)alamin adenosyltransferases in the conversion of B12 to coenzyme B12. Appl Microbiol Biotechnol. 2010;88(1):41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Froese DS, Gravel RA. Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes. Expert Rev Mol Med. 2010;12:e37.

    Google Scholar 

  98. Desai HG, Gupte PA. Helicobacter pylori link to pernicious anaemia. J Assoc Physicians India. 2007;55:857–9.

    CAS  PubMed  Google Scholar 

  99. Chery C, Hehn A, Mrabet N, Oussalah A, Jeannesson E, Besseau C, Alberto JM, Gross I, Josse T, Gérard P, Guéant-Rodriguez RM, Freund JN, Devignes J, Bourgaud F, Peyrin-Biroulet L, Feillet F, Guéant JL. Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant. Biochimie. 2013;95(5):995–1001.

    Article  CAS  PubMed  Google Scholar 

  100. Sundar I, Rahman I. Vitamin D and susceptibility of chronic lung diseases: role of epigenetics. Front Pharmacol. 2011;2(50):1–10.

    Google Scholar 

  101. Holick CN, Stanford JL, Kwon EM, Ostrander EA, Nejentsev S, Peters U. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1990–9.

    Article  CAS  PubMed  Google Scholar 

  102. Pandolfi F, Franza L, Mandolini C, Conti P. Immune modulation by vitamin D: special emphasis on its role in prevention and treatment of Cancer. Clin Ther. 2017;S0149-2918(17):30194–7.

    Google Scholar 

  103. Cooper GS, Umbach DM. The association between vitamin D receptor gene polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal women. Osteoporos Int. 1996;6(1):63–8.

    Article  Google Scholar 

  104. Jia F, Sun RF, Li QH, Wang DX, Zhao F, Li JM, Pu Q, Zhang ZZ, Jin Y, Liu BL, Xiong Y. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet Test Mol Biomarkers. 2013;17(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang H, Zhuang XD, Meng FH, Chen L, Dong XB, Liu GH, Li JH, Dong Q, Xu JD, Yang CT. Calcitriol prevents peripheral RSC96 Schwann neural cells from high glucose & methylglyoxal-induced injury through restoration of CBS/H2S expression. Neurochem Int. 2016;92:49–57.

    Article  CAS  PubMed  Google Scholar 

  106. Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kriebitzsch C, et al. 1,25-Dihydroxyvitamin D3 influences cellular homocysteine levels in murine pre-osteoblastic MC3T3-E1 cells by direct regulation of cystathionine Β-synthase. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(12):2991–3000.

    Article  CAS  Google Scholar 

  108. Guo W, Kan J-t, Cheng Z-y, et al. Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative Med Cell Longev. 2012;2012:1. https://doi.org/10.1155/2012/878052.

    Article  CAS  Google Scholar 

  109. Kraus JP, Le K, Swaroop M, Ohura T, Tahara T, Rosenberg LE, Roper MD, Kožlch V. Human cystathionine β-synthase cDNA: sequence, alternative splicing and expression in cultured cells. Hum Mol Genet. 1993;2(10):1633–8.

    Article  CAS  PubMed  Google Scholar 

  110. Orlowski M, Meister A. The γ-Glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci U S A. 1970;67(3):1248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. NCBI (2017) GSTT1 glutathione S-transferase theta 1 [ Homo sapiens (human)]. Gene ID: 2952, updated on 18-Nov-2019.

    Google Scholar 

  112. NCBI (2017) GSTM1 glutathione S-transferase mu 1 [ Homo sapiens (human)].Gene ID: 2944, updated on 18-Nov-2019

    Google Scholar 

  113. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr. 1999;69(6):1086–107.

    Article  CAS  PubMed  Google Scholar 

  114. Mehlert A, Diplock AT. The glutathione S-transferases in selenium and vitamin E deficiency. Biochem J. 1985;227(3):823–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Morton LM, Schenk M, Hein DW, Davis S, Zahm SH, Cozen W, et al. Genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2) and risk of non-Hodgkin lymphoma. Pharmacogenet Genomics. 2006;16(8):537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harmer D, Evans DA, Eze LC, Jolly M, Whibley EJ. The relationship between the acetylator and the sparteine hydroxylation polymorphisms. J Med Genet. 1986;23(2):155–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Nangju NA, Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev. 2000;9(1):29–42.

    CAS  Google Scholar 

  118. OMIM (2017) Phosphatase and tensin homolog; PTEN.Access from: https://www.omim.org/entry/601728 on December 22, 2017.

    Google Scholar 

  119. Da Costa RM, Neves KB, Mestriner FL, Louzada-Junior P, Bruder-Nascimento T, Tostes RC. TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice. Cardiovasc Diabetol. 2016;15(1):119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McCormack D, McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxidative Med Cell Longev. 2013;2013:575482.

    Article  CAS  Google Scholar 

  121. Waterson A, Bower M. TNF and cancer: the good and bad. Cancer Therapy. 2004;2:131–48.

    Google Scholar 

  122. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Gao F, Coppola G, Geschwind D, Vogel Z. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells. PLoS One. 2013;8(4):e61462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ye JF, Zhu H, Zhou ZF, Xiong RB, Wang XW, Su LX, Luo BD. Protective mechanism of andrographolide against carbon tetrachloride-induced acute liver injury in mice. Biol Pharm Bull. 2011;34(11):1666–70.

    Article  CAS  PubMed  Google Scholar 

  124. Hauer J, Anderer FA. Mechanism of stimulation of human natural killer cytotoxicity by arabinogalactan from Larix occidentalis. Cancer Immunol Immunother. 1993;36(4):237–44.

    Article  CAS  PubMed  Google Scholar 

  125. Bowie AG, O’Neill LA. Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase. J Immunol. 2000;165(12):7180–8.

    Article  CAS  PubMed  Google Scholar 

  126. Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol. 2000;164(12):6509–19.

    Article  CAS  PubMed  Google Scholar 

  127. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141–53.

    PubMed  Google Scholar 

  128. Taanman J-W, et al. The mitochondrial genome: structure, transcription, translation and replication. BBA-Bioenergetics. 1999;1410(2):103–23.

    Article  CAS  PubMed  Google Scholar 

  129. NCBI (2017) NDUFS3 NADH:ubiquinone oxidoreductase core subunit S3 [ Homo sapiens (human) ].Gene ID: 4722, updated on 3-Nov-2019

    Google Scholar 

  130. NCBI (2017) NDUFS7 NADH:ubiquinone oxidoreductase core subunit S7 [ Homo sapiens (human) ]. Gene ID: 374291, updated on 3-Nov-2019

    Google Scholar 

  131. Bresciani G, González-Gallego J, da Cruz IB, de Paz JA, Cuevas MJ. The Ala16Val MnSOD gene polymorphism modulates oxidative response to exercise. Clin Biochem. 2013;46(4–5):335–40.

    Article  CAS  PubMed  Google Scholar 

  132. Boczonadi V, Giunta M, Lane M, Tulinius M, Schara U, Horvath R. Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease. Int J Biochem Cell Biol. 2015;63:32–40.

    Article  CAS  PubMed  Google Scholar 

  133. NCBI (2017) ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1 [ Homo sapiens (human) ].Gene ID: 509, updated on 3-Nov-2019

    Google Scholar 

  134. Chhibber A, Kroetz DL, Tantisira KG, McGeachie M, Cheng C, et al. Genomic architecture of pharmacological efficacy and adverse events. Pharmacogenomics. 2014;15(16):2025–48.

    Article  CAS  PubMed  Google Scholar 

  135. Johnson JA. Pharmacogenetics in clinical practice: how far have we come and where are we going? Pharmacogenomics. 2013;14(7):835–43.

    Article  CAS  PubMed  Google Scholar 

  136. Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent). 2000;13(4):421–3.

    Article  CAS  Google Scholar 

  137. Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30(1–2):42–59. https://doi.org/10.1016/j.mam.2008.05.005.

    Article  CAS  Google Scholar 

  138. Beutler E, Gelbart T, Pegelow C. Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency. J Clin Investig. 1986;77(1):38–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. De Stefano V, Dekou V, Nicaud V, Chasse JF, London J, Stansbie D, Humphries SE, Gudnason V. Linkage disequilibrium at the cystathionine beta synthase (CBS) locus and the association between genetic variation at the CBS locus and plasma levels of homocysteine. The Ears II Group. European Atherosclerosis Research Study. Ann Hum Genet. 1998;62(Pt 6):481–90.

    Article  PubMed  Google Scholar 

  140. Su SC, Hung SI, Fan WL, Dao RL, Chung WH. Severe cutaneous adverse reactions: the pharmacogenomics from research to clinical implementation. Int J Mol Sci. 2016;17(11):1890.

    Article  CAS  PubMed Central  Google Scholar 

  141. Dean L. Warfarin therapy and the genotypes CYP2C9 and VKORC1. 2012 Mar 8 [Updated 2016 Jun 8]. In: Pratt V, McLeod H, Dean L, et al., editors. Medical genetics summaries [Internet]. Bethesda: National Center for Biotechnology Information (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK84174/.

  142. Scott SA, Edelmann L, Kornreich R, Desnick RJ. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet. 2008;82(2):495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease—implications for personalized medicine. Pharmacol Rev. 2013;65:987–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy B. Williamson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williamson, C.B., Pizano, J.M. (2020). A Nutritional Genomics Approach to Epigenetic Influences on Chronic Disease. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_17

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics